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ABSTRACT

Recent evidence suggests a link between expectile-
based distributional reinforcement learning and the
phasic activity of midbrain dopaminergic neurons.
We review the long-neglected concept of expectile
statistics, the recent trend of distributional reinforce-
ment learning, and traditional models used to under-
stand the brain’s dopaminergic reward system and
its links to several mental disorders. We propose a
new architectural model of the brain’s reward sys-
tem as an expectile-based distributional extension of
the traditional neural actor-critic architecture. We
also derive an expectile imputation strategy that is
more efficient and biologically plausible than existing
optimisation-based strategies. Finally, we develop
a detailed hypothesis regarding a uniquely distribu-
tional mechanism of learning distortions characteris-
tic of several dopamine-associated mental disorders,
and conduct exploratory simulation experiments to
establish the conceptual feasibility of our hypothesis.

1 Introduction

We investigate links between reinforcement learning (RL), the
subfield of machine learning concerning the design of compu-
tational agents that learn how to behave through interaction
with their environment [1], and reinforcement learning, the
subfield of neuroscience concerning the neural systems with
which animals learn how to behave through interaction with
their environment [2]. We begin in sections 1.1 and 1.2 with a
review of relevant ideas from each of these field.

In section 1.3 we integrate recent advancements from each field
[3, 4] into a new model for distributional RL in the brain, we
outline a detailed hypothesis regarding its links to dopamine-
associated mental disorders, and we take steps towards deriving
a simple, efficient, and biologically plausible expectile imputa-
tion strategy to accompany our model.

The remainder of the report is organised as follows: In section 2
we outline two exploratory simulation experiments relevant to
our hypotheses. In sections 3 and 4 we present and discuss our
findings from these experiments. In extensive appendices, we
provide a detailed description of selected mathematical aspects
of our model, related algorithms, and some alternative models.

1.1 Review of computational reinforcement learning

Here we give a semi-formal overview of the foundational con-
cepts of computational reinforcement learning (RL). For a com-
prehensive introduction, see [1]. We formalise the interaction
between a computational agent and its environment as a Markov

decision process: In each of a sequence of time steps, the agent
perceives a stimulus x describing1 the environment’s state s,
and selects and performs an action a; then the environment
delivers a numerical reward r, and transitions to a new state s′.
RL algorithms aim to create agents with decision-making poli-
cies that achieve high return in expectation. We define return
as a geometrically discounted sum of the rewards from each
step. The expectation is taken over randomness in the agent’s
actions and the environment’s reward and transition dynamics.

Temporal difference (TD) learning is a well-studied framework
for RL algorithms [1] wherein the algorithm directly estimates
the value of each stimulus (defined as the conditional expected
return given the stimulus) from experience, and the agent uses
these estimates to select actions. These values (and their es-
timates) are summarised by functions v(x) (and v̂(x)). TD
algorithms center around the precise method of updating v̂(x)
based on observed interactions with the environment.

In simple environments, where the stimulus identifies the state1,
we may use tabular TD algorithms. These algorithms estimate
v̂ as a table of estimates (with one estimate per state) and update
the table according to a Bellman update equation such as2,3

v̂(x)
+← α(r + γv̂(x′)− v̂(x)) (1)

where x, r, x′ is a sequence of states and rewards drawn from
experience in the environment, α > 0 is a learning rate used
to modulate the speed and stability of the update process, and
γ ∈ [0, 1] is a discount factor used in defining the return. Note
that (1) simply adjusts v̂(x) towards r+γv̂(x′) in proportion to
the difference between these two quantities. This latter quantity
is a subsequent estimate of the true v(x) based on additional
experience r, x′ available at a later time, and accordingly this
difference is the so-called temporal difference.

In environments with more possible stimuli such a table would
be intractably large or infinite, but TD RL is still possible. One
may instead estimate a finite parametrisation of v using function
approximation techniques such as artificial neural networks [5],
leading to so-called deep reinforcement learning (successfully
applied in e.g. [6, 7, 8]). Update equation (1) generalises to
to update the parameters of the function approximator based
on the gradient of a mean squared error loss function—the
loss function defining expected values (see section 1.1.1). In
practice, these updates tend to converge to an accurate estimate
of v as an instance of stochastic semi-gradient descent [1].

1The stimulus is the information available to the agent. It may be
the state’s identity (x = s), or an incomplete set of state ‘features’.

2Many variations on this equation exist. In this review we focus on
1-step TD for state values. For our experiments, we switch to using
state-action values—we maintain a value estimate for each state-action
combination. The updates retain the same general structure [1].

3Here, a +← b denotes additive assignment, as in a← a+ b.



Finally, we link value estimation and action selection. Some
algorithms (e.g. Q-learning, SARSA [1], deep Q-learning [6])
estimate the value of each action alongside each state, and
select using these estimates. Alternatively, actor-critic methods
[1, 9, 7] learn their decision policy directly alongside their value
function, mutually optimising both: Interactions controlled by
the policy (termed the ‘actor’) determine value function updates,
and the predictions of the value function (termed the ‘critic’)
inform policy updates. Actor-critic methods are of special
interest for their use as architectural models of neural reward
systems (see section 1.2.2).

1.1.1 Expectile statistics and generalised expectations

The expected value µX of a random variable X minimises the
expected squared distance from the random variable. That is,

µX = argmin
µ

E
[
(X − µ)2

]
. (2)

Expectiles are a class of summary statistics generalising the
expected value [10, 11]. Given an asymmetry parameter τ ∈
(0, 1), the τ -expectile of X , εX(τ), minimises an asymmetric
version of this expected squared distance, weighting squared
positive distances by τ and squared negative distances by 1−τ :4

εX(τ) = argmin
ε

E
[
[[X > ε]]τ1−τ (X − ε)2

]
(3)

The expected value µX is recovered as the 0.5-expectile. Expec-
tiles with τ > 0.5 are more sensitive to ‘higher-than-expected’
outcomes than they are to ‘lower-than-expected’ outcomes, and
so they lie above the expected value of X . We can thus view
these expectiles as optimistic expectations (they ‘expect’ the
value of X to be higher than its expected value). Likewise,
expectiles with τ < 0.5 lie below µX and represent pessimistic
expectations. In this sense, the asymmetry parameter τ ∈ (0, 1)
captures the degree of positive outlook of an expectile.

Since their introduction, expectiles have been neglected [12],
perhaps because sample expectiles lack the simple formula and
interpretation of the expected value or of quantiles. Quantiles
and expectiles are deeply related [13, 14], and expectiles may
be preferable in some contexts [15, 16, 17]. Moreover, viewing
expectiles as generalised expectations at varied degrees of pos-
itive outlook may improve interpretability, and appendix A.1
gives an efficient procedure for computing sample expectiles.

1.1.2 Distributional reinforcement learning

While traditional TD algorithms approach the goal of max-
imising expected return by directly estimating expected return,
recent distributional RL algorithms estimate richer characterisa-
tions of conditional return distributions than just their expected
values. For example, one might model conditional return distri-
butions with a parametric family of distributions and estimate
their parameters (one set of parameters for each stimulus) [18],
one might learn a finite non-parametric estimate of each con-
ditional distribution or its cumulative distribution functions
[19, 20], or, more generally, one might learn an arbitrary set of
statistics of each distribution such as their quantiles [21, 22] or
expectiles [3]. Moreover, many of these algorithms have tabular
and function-approximation variants. Notably, [23] extends the
actor-critic framework to incorporate a distributional critic.

4Here, [[P ]]ab denotes a generalised Iverson bracket, evaluating to
a if P is a true proposition, or to b otherwise.

Each distributional RL method brings its own distributional
Bellman update equation, an analog of (1) extended to main-
tain a suite of estimates ŝ1(x), ŝ2(x), . . . , ŝK(x). The precise
form of the new update equations must depend on the statistics
being estimated, but [3] provides a unified framework for dis-
tributional updates of arbitrary statistics. The following is an
example of an algorithm based on their general framework:
Algorithm 1 (update framework). Given experience x, r, x′:

1. Impute the estimates ŝ1(x′), . . . , ŝK(x′) into a sample of
points z′1, . . . , z

′
N with the return distribution of x′.

2. Transform each z′i into zi = r + γz′i, yielding a sample
z1, . . . , zN with the return distribution of x.

3. With these zi, update each ŝk(x) towards the desired statis-
tics, e.g. by following the gradient of a loss function.

In pursuit of an expectile-based distributional RL algorithm, [3]
proposes to estimate each conditional return distribution with
expectiles at a fixed set of asymmetry parameters τ1, . . . , τK .
We denote the estimates ε̂x(τ1), . . . , ε̂x(τK) for stimulus x.

Their algorithm, Expectile Distributional RL (EDRL), follows
the framework above. Step 3 uses the optimisation target of
equation (3) as a loss function, moving each ε̂x(τk) towards the
τk-expectile of z1, . . . , zN , directed by its gradient:3,4

ε̂x(τk)
+← 2α

N

N∑
i=0

[[zi > ε̂x(τk)]]
τk
1−τk(zi − ε̂x(τk)) (4)

This update equation resembles equation (1): ε̂x(τk) moves
towards each zi in ‘proportion’ to the difference zi − ε̂x(τk)—
except with separate proportionality constants for positive and
negative differences. We return to this insight in section 1.3.

Furthermore, step 1 requires an expectile imputation strategy—
a method for converting a set of expectiles ε(τ1), . . . , ε(τK)
into a sample z1, . . . , zN with those expectiles. Some statistics,
such as quantiles, permit a closed-form imputation strategy,
but [3] finds only an optimisation-based strategy for expectiles.
They compute an imputed sample numerically as the root of
the vector function f(z1, . . . , zN=K) = (f1, . . . , fK) with

fk = − 2

N

N∑
i=0

[[zi > ε(τk)]]
τk
1−τk(zi − ε(τk)). (5)

Each fk is the gradient of the optimisation target of (3) defining
the τk-expectile of the sample, evaluated at ε(τk), and thus a
root of f corresponds to a sample with the required expectiles5.

Distributional RL shows promise over traditional value-based
RL. Its algorithms [20, 21, 22, 23, 3] outperform state-of-the-art
traditional RL approaches in popular benchmarks [24]. [20, 4]
offer some explanations for this improvement. Besides perfor-
mance, [18] advocates a second class of benefits of distribu-
tional RL: Learning about return distributions enables making
decisions according to alternative risk preferences. For ex-
ample, one may control exposure to large negative returns6

by selecting actions based on risk-sensitive measures such as
value at risk or conditional value at risk (a.k.a. expected short-
fall). These measures may be computed from distributional
information such as quantiles [18] or expectiles [16].

5Steps 1 and 3 both involve the same gradient expression, but they
differ importantly in use: Step 3 varies expectile estimates based on a
fixed sample; Step 1 varies sample points to match fixed expectiles.

6Pursuing high expected return may permit rare ruinous outcomes.
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1.2 Review of reinforcement learning in the brain

In this section, we provide a review of animal reinforcement
learning and associated mental disorders. We focus on dopamin-
ergic neurons—long implicated in reward-based learning since
[25] observed that their electrical stimulation positively rein-
forced behaviour in rats. While other neurotransmitters such
as serotonin have significant effects on learning behaviour and
cognition [26], they are beyond our review’s scope.

Dopamine is a neurotransmitter with significant effects on cog-
nition and behaviour including motor control, motivation and
decision making. A large majority of dopaminergic neurons
are found in the ventral part of the mesencephalon (midbrain).
The mesencephalic dopaminergic system consists of three ma-
jor nuclei—the substantia nigra pars compacta (SNpc), the
ventral tegmental area (VTA) and the retrorubtal field [27],
and comprises of several dopaminergic networks with separate
projection pathways such as the nigrostriatal pathway and the
mesolimbic pathway.

1.2.1 The reward prediction error hypothesis

The reward prediction error hypothesis attempts to explain the
phasic activity of mesencephalic dopaminergic neurons. Under
this hypothesis, the brain uses a temporal difference (TD) algo-
rithm to learn to predict and maximise subjectively rewarding
experiences [1, 28, 29, 30]. Reward predictions made by the
brain correspond to the value estimates of a TD algorithm, and
reward prediction errors (RPEs) correspond to the temporal
difference from equation (1). Moreover, the phasic activity of
dopaminergic neurons is a neurophysiological signal encoding
the magnitude of these RPEs. This link between computational
and biological RL was made after [31, 32] observed that when
a subject is presented with an unexpected reward, dopaminergic
neurons respond strongly, but once the subject is trained and
an association is built between a predictive stimulus and the
reward, the response of the dopaminergic neurons reduces.

In the literature, RPE is defined as the quantitative discrepancy
between the result expected when the cue was presented, and
the result that was actually experienced [33]. When a cue is first
encountered, followed by an unexpected reward, there is a large
discrepancy between the expectations and actual occurrence.
This leads to the production of a large RPE. However, once the
individual learns that the cue reliably predicts a particular event,
there is little RPE as the discrepancy between what is expected
and what actually occurs is reduced. Therefore, RPE facilitates
learning about reward-predictive cues and allows more accurate
predictions about future rewards [34].

Dopaminergic neurons not only respond to the reward itself
but also the predictive stimulus [29]. When the reward itself
is presented, there is no response if the reward had already
been predicted with the stimulus. When the reward received is
greater than predicted, dopaminergic neurons respond strongly,
reflecting a positive RPE. On the other hand, rewards which are
smaller than predicted elicit a negative response (depressive ac-
tivity), reflecting a negative RPE. This activity of dopaminergic
neurons largely occurs in the SNpc, which is part of a larger
cortico-basal ganglia-thalamo-cortical (CBGTC) circuit that is
critical to cognitive action selection.

There are two core pathways in the CBGTC, namely the direct
Go pathway which responds to positive RPE and the indirect
No-Go pathway which responds to negative RPE [35]. The

striatum, which is the major input region of the CBGTC, con-
tains two major type of neurons corresponding to the direct Go
pathway and the indirect No-Go pathway. The Go pathway neu-
rons predominantly contain D1 receptors on which dopamine
has an excitatory effect. By contrast, No-Go pathway neurons
contain D2 receptors via which, dopamine has an inhibitory
effect [36]. Therefore, when there is fast and high-amplitude
phasic dopaminergic firing, encoding positive RPE, the direct
Go pathway is activated via D1 receptors, driving reinforce-
ment of actions that lead to positive rewards. When there is
a dip in dopamine firing, encoding negative RPE, the indirect
pathway neurons with D2 receptors are disinhibited, promoting
avoidance learning.

1.2.2 The neural actor-critic model

The traditional actor-critic model as briefly described in sec-
tion 1.1 consists of a critic sub-network computing the weighted
sum of future rewards and an actor sub-network which utilizes
these predictions to choose actions that maximize the weighted
sum. Multiple studies reviewed by [37] and [38] assigned the
actor and critic functions to specific brain regions; suggestions
have been made that dopaminergic signals from the VTA to the
ventral striatum correspond to the critic, whereas signals from
the SNpc to the dorsal striatum corresponds to the actor as it
learns the action-selection policy, in contrast to earlier works
that assigned the actor-critic system to two chemically different
compartments within the striatum, the matrix- and striosomal
neurons [39].

The model is illustrated in figure 1. Information on states
of the internal or external environment is represented by the
input from the frontal cortex to the ventral striatum. Outputs
of the ventral striatum (the critic), predictions of state values,
are used to calculate the RPE in the VTA and the SNpc. The
dopaminergic signal resulting from the RPE computed in the
VTA/SNpc then projects back to the dorsal and ventral striatum
(the actor and critic, respectively) [38], inducing the ‘policy
updates’ mentioned above.

Frontal Cortex Ventral Striatum

Dorsal Striatum

VTA/SNpc

Stimulus Reward

Action

...

v

Dopamine

Figure 1: Traditional actor-critic architecture in the biological system,
adapted from [38].

Disturbances in this actor-critic system, such as the impairment
of the critic in response to cocaine exposure, can have detri-
mental effects on action selection processes that [38] describes
as “the coach gone awry and an actor running loose”, and lead
to aberrant behavior observed in mental disorders, which will
be discussed in the following section.
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1.2.3 Dopamine-associated mental disorders

Dysfunctions in dopaminergic neurons have been implicated in
multiple neuropsychiatric disorders such as schizophrenia [40],
addiction [41], and Parkinson’s disease [42].

Insights on mechanisms and complications of mental disorders
associated with reward processing systems might be explained
by a distorted reinforcement learning system. The list of mental
disorders discussed in this work is not exhaustive and leaves
out clinically relevant disorders such as depression, which is
characterized by an overly pessimistic view on the model of
the world [43].

Drug Addiction A pattern often seen in drug addiction pa-
tients is that despite of some kind of awareness that persist-
ing drug intake will result in serious harm, compulsive drug-
seeking behavior will be continued. This indicates that the
conscious assessment of consequences in the higher levels of
the brain may still be intact but due to an overvaluation of drugs,
the action selection process in the lower levels is distorted and
choices that lead to drug receipt will be preferred over other,
less harmful options [44, 45].

The main aspect that sets drug addiction apart from other
dopamine-associated mental disorders is the direct or indirect
neuropharmacologically induced increase of dopamine levels
in response to cocaine, nicotine, heroin and other substances
of abuse [46]. In TDRL, an effective learning process requires
a shift of the RPE signal to zero, in which case no dopamine
signal production occurs (phasic dopamine is a learning signal
encoding RPE, as mentioned in 1.2.1) and learning stops [47].
However, the DA increase caused by drugs always produces
a positive RPE signal, increasing the value of states leading
to drug receipt, which consequently increases the likelihood
for the agent to select an action that leads to these states [46].
Repetitive selection of actions in favor of drug consumption
will ultimately ‘overshadow’ the values of other reinforcing
rewards [45].

The dysregulation of motivational circuits that is found in drug
addiction has been described by a three-step cycle mediated by
three major neurocircuits; the basal ganglia, extended amyg-
dala, and prefrontal cortex, as proposed by [48]. The first
stage, defined as the binge/intoxication stage, involves a drug-
mediated dopamine release (among other neurotransmitters)
into the ventral striatum, causing the individual to feel ‘high’
by the emulation of dopamine increase frequencies associated
with rewards. New associations with drug availability are es-
tablished for previously neutral stimuli, increasing incentive
salience. The subsequent withdrawal/negative affect stage is
characterized by stress responses such as chronic irritability,
dysphoria or decreased motivation for natural rewards, which
are the result of dysregulated components of the reward sys-
tem including the decreased dopaminergic transmission in the
nucleus accumbens. The third stage, termed the preoccupa-
tion/anticipation stage, is responsible for relapses in humans
and involves impaired inhibition of maladaptive behavior [48].
The No-Go-system would normally inhibit the Go-system re-
sponsible for the drive of craving and engagement of habits;
this inhibitory control is missing in addiction, preventing indi-
viduals from successful cognitive inhibition of craving [48].

The shift from the binge/intoxication stage to the withdrawal
stage that drives the drug-taking behavior likely represents a
shift from impulsivity to compulsivity, or a shift from positive

to negative reinforcement. Initial drug use for the feeling of
reward is followed by drug use to avoid negative states [49,
48]. Considering the fact that only certain substance users
go through this transition [48] and that heritability exists in
addiction [50], genetic differences between individuals and
epigenetic changes also need to be kept in mind; however, this
is beyond the scope of our review.

Gambling addiction The link between gambling disorder
and dopamine is suggested by the fact that uncertainty is both
the core feature of gambling games and the main cause of
dopamine activation. As well as yielding reward prediction
error, the variability of rewards boosts the incentive salience of
its stimuli [51]. Other dopamine response to reward proximity
[52, 53] or stress [54] may also reinforce the addiction. In
addition, overactive dopamine firings encourage the causal
binding of unrelated events [55], which leads to a sense of
control and distorted reasoning seen in the case of ‘near misses’
or ‘losses disguised as wins’ [56, 57].

Other studies proposed models where dopamine is not mainly
responsible for the disorder, yet plays significant role in the
complete process. [58] attributed gambling disorder to the im-
pairment of model-based learning and decision making, which
results in insensitivity to the changes in the environment. [59]
explained the addiction with broken state representation and
categorization formed by a sequence of rewards with a few big
strikes at the start and many small losses following. [60] mod-
eled the gambling disorder as a lack of directed exploration.

Parkinson’s Disease Parkinson’s Disease (PD) is one of the
most common age-related neurodegenerative diseases. PD
mainly affects the motor control system, and is caused by loss
of dopaminergic neurons, with also genes and environmental
factors contributing to define the mechanism and cause of dis-
ease [61, 62, 63]. This midbrain dopaminergic neuron loss in
nigrostriatal pathway results in a lower tonic dopamine level
and lower phasic dopamine bursts, equivalently increasing re-
cruitment of the indirect No-Go pathway and decreasing that
of Go pathway, facilitating punishment learning and impaired
reward learning, respectively. Punishment learning is the ability
of a subject to learning to avoid negative stimuli, and reward
learning is learning to choose positive stimuli [64]. The medi-
cation for PD patients, such as dopamine D2 receptor agonists
(DA) or dopamine replacement therapy (L-dopa), reverses this
No-Go bias. However, some patients with PD, up to 20%,
tend to have manifested at least one impulse control disorder
(ICD) and related behaviors, such as compulsive buying and
pathological gambling, at some point [65].

The overmedication hypothesis is proposed to explain this phe-
nomenon as a possible side effect of overdosing the ventral
striatum, which is less affected in PD patients compared to
the dorsal striatum [66]. Coupled with DA medication, PD,
affecting the actor, patients with ICD, affecting the critic, tend
to learn and perform better in trials with positive reward than in
negative rewards, suggesting suboptimal learning from negative
RPE in the critic [67]. Interestingly, [68] finds that in addition
to verifying impaired loss learning in PD patients when applied
DA medication with fMRI, on the fact that DA induce greater
ventral striatal activity to positive RPE in PD patients with ICD,
resulting in a ‘better than expected’ outcome.
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1.3 Distributional reinforcement learning in the brain

Though the RPE hypothesis of the phasic signalling of mid-
brain dopaminergic neurons has been acknowledged as one of
the most successful and elegant achievements of computational
neuroscience [69, 70], recent work suggests that traditional tem-
poral difference RL, if it indeed tells the story of RL in brains,
may not tell the whole story. Analysing reward response data
from an optogenetic study of midbrain dopaminergic neurons
in mice [71], [4] found that while aggregate phasic activity
followed the predictions of traditional RL, responses differed
significantly across individual neurons. Earlier work (e.g. [72])
reports similar diversity amongst neurons, but [4] offers an
explanation in terms of the new distributional RL paradigm.

In particular, [4] analysed the responses of 40 dopaminergic
neurons to various reward magnitudes and found the following:

1. The neurons switched from decreased to increased activity
(compared to baseline) at different reward magnitudes.

2. Each neuron responded linearly to reward magnitude on
either side of its individual reversal point, but the slopes
on either side (and also between neurons) differed.

These findings suggest the neurons did not signal a uniform
RPE according the same prediction and subjective reward sig-
nals as if by equation (1)—otherwise, their reversal points
would coincide, and they would each behave linearly.

Instead, [4] equates each neuron’s piece-wise linear response
with the characteristic asymmetry of expectile statistics, and
suggests that these responses signal the asymmetrically-scaled
prediction errors of equation (4) as if implementing expectile-
based distributional RL. In this view, the two slopes of each
neuron determine an individual asymmetry parameter τ , and
the reversal point of the neuron corresponds to the predicted
τ -expectile of the reward distribution. [4] supports this distribu-
tional hypothesis of midbrain phasic dopaminergic signalling
with an additional finding:

3. The slopes and reversal points of the neurons, if inter-
preted as a set of τ -expectiles, qualitatively resemble the
expectiles of the underlying reward distribution.

This distributional hypothesis is appealing. Though this anal-
ysis is based on a small number of neurons, existing evidence
seems to support the general idea that dopaminergic neurons
could operate in a complex heterogeny [73, 74, 75]. Moreover,
the advantages of distributional over traditional RL in terms of
learning performance and flexibile risk preferences (see section
1.1.2) may justify its natural existence. This hypothesis may
represent another event in the history of mutually-beneficial
discovery between the fields of artificial intelligence and neuro-
science [1, 4]. Finally, a model of learning in the brain based
on distributional RL affords a number of new ways for things
to ‘go awry’, with new potential to explain the mechanisms of
learning-associated mental disorders [4]. We build directly on
this hypothesis in our work.

In a similar vein, it has recently been proposed to model the
distorted learning of patients with certain dopamine-associated
mental disorders using a generalised RL framework with paral-
lel treatment of positive and negative rewards [76, 77]. Their
proposed model, split Q-learning, separates positive and nega-
tive rewards into two parallel streams and maintains separate es-
timates of the return derived from each stream. Weighting these

streams asymmetrically affords great flexibility in modelling
the effect that mental disorders have on the reward processing
systems [78]. This asymmetry is reminiscent of expectile-based
distributional RL, however we note that even distributional RL
only considers a single stream delivering the sum of positive
and negative rewards. We take some inspiration from [77] in
our experimental design (see section 2.2).

1.3.1 A distributional neural actor-critic model

Building on the distributional hypothesis of [4], we propose
that an extended neural actor-critic architecture implements
expectile-based distributional RL in the brain. We continue
to associate the ventral striatum with the critic and the dorsal
striatum with the actor, and their input from the frontal cortex
still represents the environmental stimulus. We propose that the
outputs of the ventral striatum represent a suite of predictions,
each representing an expectile of the future reward distribution
at some degree of asymmetry. Furthermore, we suppose that the
VTA and SNpc, or neighbouring areas, continuously perform
some kind of imputation so as to compute asymmetrically-
scaled RPEs as if by equation (4)7. The dopaminergic neurons
of the VTA/SNpc are responsible for communicating these
asymmetrically-scaled RPEs to the remainder of the system to
drive the learning process, as per the distributional hypothesis.

Frontal Cortex Ventral Striatum

Dorsal Striatum

VTA/SNpc

Stimulus Reward

Action

...

ε(τ1)

ε(τ2)

ε(τ3)

ε(τ4)

ε(τ5)
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putation

A
sym

m
etry

Dopamine

Figure 2: Distributional neural actor-critic architecture, inspired by
expectile-based distributional RL and the imputation framework.

The model assumes significant complexity between the ven-
tral striatum and VTA/SNpc. Expectile predictions must reach
dopaminergic neurons with corresponding asymmetries. Dis-
tributional learning may also require the dopaminergic neu-
rons’ outputs to selectively project back to the source of their
respective inputs [4]8. Correlating the asymmetry parame-
ters of dopaminergic neurons with their spatial location in the
VTA/SNpc may simplify the implementation. [73] reported
spatial diversity in the response characteristics of midbrain
dopaminergic neurons (though not the same kind of response
diversity explored in [4]). Furthermore, neuromodulatory sys-
tems are known for exhibiting complex heterogeneity [74].
In particular, [75] discusses molecular and genetic diversity
amongst dopaminergic neurons which, we propose, could help
establish the kind of spatial organisation discussed above.

7We discuss this link in greater detail in appendix A.2.
8The discussion in [4] (supplemental information) on this point ap-

pears to neglect the importance of imputation [3]. Properly considering
imputation may turn out to simplify the required architecture.
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1.3.2 An alternative expectile imputation strategy

Imputation is a bottleneck in current expectile-based distribu-
tional RL algorithms and in their biological plausibility. [3]
mitigated EDRL training time with additional computational re-
sources to perform their optimisation-based imputation strategy.
If the brain performs imputation, we suppose it is not through
this computationally demanding optimisation-based strategy.

An efficient replacement strategy could streamline expectile-
based distributional RL and provide a more biologically plausi-
ble account of the brain’s reward processing according to the
distributional hypothesis9. We derive an efficient alternative
strategy—with, in places, the parallel flavour of biologically
plausible neural computation—in algorithm 2. The strategy is
based on an insight from one of the original papers introducing
expectiles [11] relating the expectiles of a random variable to
the variable’s cumulative distribution function (CDF):
Theorem 1. Let X be a random variable with mean µX and
CDF FX . The solutions to equation (3) form a strictly monoton-
ically increasing function of τ , εX(τ) : (0, 1)→ R, with range
RX and inverse function τX(ε) : RX → (0, 1). Moreover,
if FX is continuously differentiable, then τX has continuous
derivative τ ′X , and for x 6= µX (that is, for τX(x) 6= 1

2 ),

FX(x) =
τ ′X(x)(µX − x)− τX(x)(1− 2τX(x))

(1− 2τX(x))2
, (6)

where this equation holds in the limit for x = µX .

Proof. In their first theorem, [11] proves the existence, unique-
ness, and strict monotonicity of the function εX , and a similar
relationship to equation (6). We merely simplify this relation-
ship, noting ε′X(τX(x)) = 1/τ ′X(x) since εX = τ−1X .

Algorithm 2 (alternative imputation strategy). Given a set of
asymmetry parameters τ1, . . . , τK and their corresponding ex-
pectiles ε1, . . . , εK for a random variable X with CDF FX :

1. Interpret (ε1, τ1), . . . , (εK , τK) as coordinates of the func-
tion τX (with τX(εk) = τk).

2. Approximate τ ′X with coordinates (ε1, τ ′1), . . . , (εK , τ
′
K)

(with τ ′k ≈ τ ′X(εk)) based on neighbouring points of τX .

3. Approximate FX with coordinates (ε1, F1), . . . , (ε1, FK)
(with Fk ≈ FX(εk)) using equation (6). Exclude any k
for which τk = 1

2 , noting that for such k, εk = µX .

4. Use inversion sampling to produce a sample from FX .
That is, return the inverse image under FX of a uniformly
random sample over [0, 1]. A large sample will share this
CDF. Note: To accurately invert FX , we must interpolate
between and extrapolate beyond our coordinates.

This strategy represents a hopeful step towards better expec-
tile imputation strategies for both computers and brains. In
our implementation, we approximate τ ′X by fitting a quadratic
polynomial to the immediately neighbouring points along the
inverse of τX , and we interpolate between our coordinates with
radial basis functions and extrapolate beyond them with an
exponential decay. We note that other detailed implementations
may be preferable, but are yet to be explored. See appendix A.4
for further discussion.

9It may be possible to achieve distributional RL in the brain outside
the imputation framework. Such a method would be consistent with
the distributional hypothesis, but would invalidate our model.

1.3.3 Imputation fidelity and imputation distortion

An expectile imputation strategy should faithfully recover a dis-
tribution similar to the one from which its input expectiles were
estimated. We refer to this concept as the strategy’s fidelity.

The distribution of asymmetry parameters10 may underpin the
fidelity of an imputation strategy. A faithful and efficient impu-
tation strategy may rely on its inputs representing a sufficiently
full spectrum of asymmetries (that is, with some optimistic,
some balanced, and some pessimistic expectiles), and its fi-
delity may plausibly suffer given a different distribution of
asymmetry parameters (for example, with only optimistic or
only pessimistic expectiles11). Such inputs might lead to the
strategy producing a distorted imputed distribution, and the
distorted distribution may be systematically biased relative to
the original distribution, following the mismatch between the
assumed asymmetry distribution of the strategy and the real
asymmetry distribution of the input expectiles.

(a) (b) (c)

Figure 3: Imputation distortion. (a): An example reward distribution.
(b): Its expectiles at various asymmetries (orange: missing pessimistic
expectiles). (c): Hypothetical (orange: distorted) imputed distribution.

Such an imputation distortion may lead to a distortion in the
learned distributions in a distributional RL algorithm, and
thereby to distorted behaviour. According to the imputation-
based update framework, imputation forms a crucial part of
every parameter update during learning. If a systematic bias
alters distributional information as it is ‘backed up’ from the
estimates at one state to the estimates at the previous state, then
this bias could prevent accurate learning of future rewards’ dis-
tributions. Unable to learn about future consequences despite
experience, an agent may in turn show distorted behaviour.

This leads to our core hypothesis regarding a uniquely distri-
butional mechanism for distorted learning in mental disorder
patients. We stress that the distributional perspective is integral
to our hypothesis: In the traditional, expected-value-based RL
paradigm, there is no distribution of asymmetry parameters de-
termining a suite of estimates maintained by the learner, and no
concept of imputation through which updates can be corrupted.
Hypothesis. The brain implements expectile-based distribu-
tional RL according to our distributional neural actor-critic
model. In healthy individuals, predictions are maintained across
a wide distribution of asymmetry parameters. In some indi-
viduals, the effective distribution of asymmetry parameters is
altered (for example, by selectively disabling neurons involved
in processing pessimistic expectiles). This impairs the fidelity
of the imputation calculation, leading to a systematic distortion
of distributional information during distributional updates. This
in turn affects the distributional predictions learned by the re-
ward system, and, finally, manifests as a behavioural distortion
characteristic of a dopamine-associated mental disorder.

10We distinguish two distributions: The distribution of future re-
wards which a distributional RL algorithm seeks to estimate, and
the distribution of asymmetry parameters determining the suite of
statistics with which the algorithm accomplishes this estimation.

11While each expectile contains information about an entire distri-
bution, for efficiency reasons a strategy may not utilise all information
in each expectile when expecting a comprehensive set of expectiles.
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2 Methods

In this section we detail our exploratory simulation experiments
investigating the fidelity of different imputation strategies and
its susceptibility to a shift in the asymmetry distribution, and
measuring the effect of a shifted asymmetry distribution on
distributional learning dynamics.

2.1 Imputation fidelity experiments

We designed a simulation experiment to explore the fidelity of
each imputation strategy—both the optimisation-based strategy
from [3] as summarised in section 1.1.2, and our alternative
strategy as derived in section 1.3.2.

The simulation begins with a large sample randomly drawn
from a test distribution, such as a multi-modal Gaussian mixture
model. From this sample, we calculate the τk-expectile for the
set of asymmetry parameters τk = 2k−1

2K (k = 1, . . . ,K). To
test an imputation strategy, we use the strategy to impute these
expectiles into an imputed sample. Then, we compute the
expectiles of the imputed sample.

Comparing the original sample to the imputed sample, and com-
paring the original sample’s expectiles to those of the imputed
sample, reveals the level of fidelity with which the imputation
strategy achieves its goal. Any divergence between the two
distributions may signify an undesired imputation distortion.
To amplify and detect even small distortions, we continue our
simulation by iterating the cycle described above: Use the pre-
vious imputed sample’s expectiles to impute another sample,
take expectiles, and so on.

To explore the effect of the asymmetry distribution on this fi-
delity, we repeated the above simulation for each imputation
strategy with the pessimistic expectiles withheld from the impu-
tation step. That is, we use an optimistic asymmetry distribution,
spanning from τb k

2 c =
1
2 to τK = 2K−1

2K .

In our experiments, the various simulation parameters were as
follows: We used a Gaussian mixture model with two equally-
weighted components with unit variance and means ±5 as the
test distribution for all simulations. We set K and thereby the
asymmetry distributions as outlined in table 1. We continued
each simulation for at least 50 iterations. We used the method
from appendix A.1 to efficiently calculate sample expectiles.

Strategy Asymmetries K τk used

Optimisation Full 11 1
22 ,

3
22 , . . . ,

21
22

Optimisation Optimistic 21 1
2 ,

23
42 , . . . ,

41
42

Alternative Full 101 1
202 ,

3
202 , . . . ,

201
202

Alternative Optimistic 101 1
2 ,

103
202 , . . . ,

201
202

Table 1: Parameters for fidelity experiments. The optimisation-based
imputation strategy uses smaller K because of its computational com-
plexity (for both asymmetry distributions, we impute 11 expectiles).

2.2 Iowa gambling task experiments

The Iowa gambling task (IGT) [79, 80] is a popular paradigm
for studying decision-making in humans and its links to rein-
forcement learning [81]. In the task, participants must repeat-
edly choose between four decks of cards, A, B, C, and D, to

?

A

B

C

D

A1

B1

C1

D1

D2

C2

B2

A2

Figure 4: Our ‘two-step’ Markov deci-
sion process implementing an Iowa gam-
bling task. In each episode, the agent
begins in state ? and may choose ac-
tion A1, B1, C1, or D1, for no reward.
Actions A2, B2, C2, and D2 are avail-
able from the respective resulting states.
These actions are rewarded according to
the reward scheme outlined in table 2,
and lead to a terminal state. Thus, the
rewards are delivered with a one-step
delay after the agent chooses a ‘deck’.

Table 2: Reward scheme for our Iowa gambling task (IGT) environ-
ment. The agent always gets the positive reward. The negative reward
is added to the positive reward with the given probability. We also
repeated our experiments with a modified reward scheme, to highlight
the potential for the asymmetry distribution to influence behaviour in
distributional RL. In our modified task, deck A′ replaced deck A.

Positive Negative Prob. of Expected
Deck reward reward neg. reward total reward

A 100 −250 50% −25
B 100 −1250 10% −25
C 50 −50 50% 25
D 50 −250 10% 25

A′ 135 −250 50% 10

draw from. The cards from each deck are accompanied by posi-
tive rewards, and sometimes also by negative penalties. Various
reward schemes are used in the literature, as summarised by
[81] (supplemental information), but in all cases decksA andB
yield high positive rewards but a negative expectation and decks
C and D yield moderate rewards with a positive expectation.

In order to explore the impact of the asymmetry distribution on
expectile-based distributional RL, we implemented the IGT as
a simple Markov decision process (figure 4, reward scheme in
table 2). Crucially, our model of the task separates the action
of selecting a deck from the action receiving a reward. Learn-
ing this task requires updates to ‘back up’ information learned
about each reward distribution to the state from which decisions
are made. If this update involves an imputation step distorting
the backed-up distribution (e.g. due to a skewed asymmetry
distribution), then this distortion may affect the learned distribu-
tions in the decision-making state and the agent’s behaviour. A
successful agent will learn to prefer C1 and D1 over A1 and B1

based on experience with A2, B2, C2, and D2. To emphasise
the potential for imputation distortion to influence behaviour,
we also explored a modified reward scheme with A2’s positive
reward increased (with deck A still inferior in expectation).

In our experiments, we compared traditional Q-learning [1]
and EDRL ([3], section 1.1.2). For EDRL, we used [3]’s
optimisation-based imputation strategy (with K = 11), or our
alternative imputation strategy (with K = 101). In particular,
we used EDRL-style updates in a Q-learning-style algorithm,
learning a suite of expectile estimates for each of the eight
state-action combinations. We used the 0.5-expectile to select
greedy actions. As in section 2.1, we used uniformly spaced
asymmetry distributions and also optimistically-shifted asym-
metry distributions. We trained each algorithm for 100,000–
200,000 episodes with exploration probability ε=0.2, learning
rate α=0.001, and discount factor γ=1.
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3 Results

We present the results of the simulations outlined in section 2.
We summarise our imputation fidelity findings in figure 5, and
our IGT findings in figures 6 and 7.

0.0

0.5

1.0

(a) (e)

0.0

0.5

1.0

(b) (f)

0.0

0.5

1.0

(c) (g)
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Return
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Figure 5: Imputation Fidelity. Strategy key: Each row contains the
results for one strategy and asymmetry distribution, in the same order
as the rows of table 1. Colour key: Gray: original distribution; purple:
first imputed distribution; orange: distribution after 50 imputations.
(a)–(d): Expectiles plotted against the corresponding asymmetry pa-
rameters. Black marks on the left denote the asymmetry parameters
used in imputation (the curves always show a full set of expectiles). (e),
(f): Optimisation strategy yields samples of K = 11 points, scattered
along the horizontal axis against a histogram of the original sample.
Curves show kernel density estimate (bandwidth parameter 0.18). (g),
(h): Histograms for original and imputed samples.

The optimisation-based strategy showed excellent expectile
fidelity and a certain robustness to a skewed asymmetry distri-
bution. This method sustained expectiles within the asymmetry
distribution in both cases (figure 5a, b). However, perhaps
due to the limited output sample size, the samples appear to
have failed to capture the true shape of the original distribution
(figure 5e, f), despite matching well at certain expectiles.

The alternative strategy showed little divergence with a full
asymmetry distribution (figure 5c, g), but a dramatic shift under
a skewed asymmetry distribution (figure 5d, h). Notably, 5d
shows that this shift impacts not only the ‘missing’ expectiles,
but also those within the optimistic asymmetry distribution,
including the 0.5-expectile. In further experiments (not shown)
we observed a reversed effect with a pessimistic asymmetry
distribution, and a significant divergence over a larger number
of iterations, even with the full asymmetry distribution.
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Figure 6: Learning the IGT. (a): Q-learning’s expected value es-
timates for 8 actions A1, A2, B1, B2, C1, C2, D1, D2, respectively
(i.e. left/purple bars: estimates ‘backed up’ to decision-making state,
right/orange bars: estimates learned from rewards). (b): Deck choices
during training for Q-learning (typical of all agents). (c)–(f): Like
(a), but with learned 0.5-expectiles from EDRL agents of varying
imputation strategy ((c), (d): optimisation-based; (e), (f): alternative)
and asymmetry distribution ((c), (e): full; (d), (f): optimistic).
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Figure 7: Learning the modified IGT. (a), (c), (d): Like figure 6’s (a),
(e), (f). (b): Deck choices during training (gray: Q-learning; purple:
full-asymmetry EDRL; orange: optimistic-asymmetry EDRL).

The divergence shown in our fidelity experiments affected
learning and behaviour in our IGT experiments. All agents
successfully demonstrated a learned preference for decks C
and D in the original task (figure 6b). Comparing pairs of
predictions, we see most agents ‘backed up’ most predictions
to the decision-making state accurately (figure 6a,c–e). One
agent (6f: EDRL, alternative imputation, optimistic asymmetry
distribution) learned systematically higher predictions in the
decision-making state, but still acted optimally. The shift af-
fected decks A and B (with higher positive rewards) most. The
modified task (table 2, figure 7), with A2’s value closer to (but
still below)C2’s andD2’s, induced a behavioural change in this
agent. The agent accurately learned A2’s, but not A1’s, value
(figure 7d), and this lead to altered decision-making (figure 7b).
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4 Discussion

Our results represent a proof-of-concept of the ability for the
asymmetry distribution used by an expectile-based distribu-
tional RL algorithm to lead to a distortion at the level of be-
haviour. We have established, through our fidelity experiments,
that an efficient and otherwise faithful imputation strategy can
have its resulting distribution distorted when faced with an
‘incomplete’ distribution of asymmetry parameters. We have
further established, through our IGT experiments, that this im-
putation distortion can lead to a distorted learning dynamic,
corrupting the predictions learned by the algorithm, and, ul-
timately, the agent’s behaviour. We note that these findings
may benefit from a well-chosen task and distribution—future
work could investigate the prevalence of these effects over a
wider range of distributions and learning tasks, and investigate
the dynamics of distributions during learning in greater detail.
Moreover, future experiments could investigate the asymme-
try distribution of dopaminergic neurons by estimating rever-
sal points and asymmetric response slopes [4] to inform both
computational distributional RL and links between asymmetry
distributions and mental disorders.

We propose that the overvaluation of drug-related stimuli stems
from an impairment of pessimistic neurons, leaving an overly
optimistic action selection system that favors immediate, drug-
related rewards regardless of the negative consequences. Find-
ings had shown that cocaine-addicted individuals continue
showing responses to previously rewarding stimuli even when
their reward-related predictive value is not given anymore, thus
indicating that circuits encoding negative RPE (correspond-
ing to the Stop system decribed in section 1.2.3) are impaired
[82], backing up our hypothesis on a systematic distortion of
distributional information in pathological individuals.

Our hypothesis of unbalanced asymmetry parameters distort-
ing behaviors can be reconciled with the biological findings.
Repeated omission of reward seen in gambling can potentiate
the dopamine response for negative outcomes [83], and the
concomitant increasing activity in emotional pain related area
further depresses efficient allocentric evaluation of the loss
[84]. Reward predictive cue itself also places extra emphasis on
positive signals [85]. In addition, habenula lesions may poten-
tially explain reducing inhibitory to reward omission and biased
learning since it impairs learning more severely from negative
RPE than the positive [86]. However, the clear evidence of
the involvement of imputation is insufficient to our knowledge.
We find an alternative model using a shifted spectrum of asym-
metry parameters without explicit use of imputation is able to
simulate gambling disorder as well, see appendix B for details.

As [68] has provided the neuroimaging evidence regarding,
with dopamine agonist medication, an enhancement in reward
learning, or gain learning, in Parkinson’s Disease (PD) patients
with Impulsive Control Disorder (ICD) and impairment in pun-
ishment learning, or loss learning, in PD patients without ICD
were observed. From that, the PD patients with ICD case has of-
fered a rigid support to our hypothesis asymmetry cognition of
the reward distribution in reward processing systems, which the
experimental results are consistent with both the hypothesis and
the findings, to a degree—the experimental results can be seen
as a mixture of increased gain learning of the agents and im-
paired punishment learning. However, it would be interesting to
model and explore, using distributional RL, the computational
agent performance in with a task that has hierarchical reward

structure as seen in [64]. The performance on the task infers
upon their gain and punishment learning, and along with that,
further studies should involve an uncertainty component, which
is preferable in experimental designs involved with gambling
studies, in their experimental design. In addition to the pro-
posed experimental design to separate reward and punishment
learning components, by taking into account that only a certain
subtype of dopamine neurons are affected in PD, and that there
is a high diversity between dopamine neurons even within the
same anatomical structures [75], we speculate that the specific
dopamine neurons affected in PD patients may correspond to
the pessimistic population in our distributional model.

Anhedonia (reduced pleasure in previously enjoyable activities)
is commonly reported as a symptom of Major Depressive Dis-
order (MDD) [87]. Existing literature suggests that anhedonia
is likely caused by dysfunctional processing of reward informa-
tion [88, 89]. Furthermore, individuals with MDD reportedly
have reduced sensitivity to rewards [90], increased sensitiv-
ity to punishments [91], and increased pessimistic views [43].
We speculate that these behavioural symptoms stem from a
pessimistic asymmetry distribution of dopaminergic neurons.
Further experiments are required to establish a link between
our model and the biological mechanisms of anhedonia.

Our alternative expectile imputation strategy is a step toward
more efficient and biologically plausible expectile-based distri-
butional RL. Compared to the optimisation-based strategy, our
strategy can impute larger sets of expectiles into larger samples
with less computational expense. Since learning more expec-
tiles may improve agent performance [3], we consider this a
significant advantage. Future simulations could quantify the
fidelity of the method given a full asymmetry distribution over
a range of return distributions. Further discussion in appendix
A.4. Note that the efficiency of our strategy is linked both to
its susceptibility to imputation distortion, and to its biological
plausibility. If the brain uses imputation, its strategy may be
similarly susceptible to a shifted asymmetry distribution.
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APPENDICES

A Exploring Expectiles

A.1 Efficiently computing sample expectiles

To our knowledge, an efficient method of computing the ex-
pectiles of a sample is not available within standard software
libraries. Here we derive a method for computing the expectiles
of a sample without resorting to standard iterative optimisation
routines, based on the observation that the sample expectile
optimisation target has a piece-wise-linear continuous gradient
for which the root may be easily computed12.

Given a sample ~x = x1, . . . , xN and an asymmetry parameter
τ ∈ (0, 1), define the τ -sample-expectile ε~x(τ):4

ε~x(τ) = argmin
ε

1

N

N∑
i=0

[[xi > ε]]τ1−τ (xi − ε)2. (7)

Differentiating the optimisation target of (7) with respect to ε
yields a necessary condition for ε = ε~x(τ):

0 =
−2
N

N∑
i=0

[[xi > ε]]τ1−τ (xi − ε) or, equivalently,

0 = (1− τ)
∑
i:xi≤ε

1

N
(xi − ε) + τ

∑
i:xi>ε

1

N
(xi − ε). (8)

Define the sample cumulative distribution function F~x(ε) and
the sample partial moment function M~x(ε)

F~x(ε) =
∑
i:xi≤ε

1

N
M~x(ε) =

∑
i:xi≤ε

1

N
xi (9)

and note their ‘complement’ identities

1− F~x(ε) =
∑
i:xi>ε

1

N
(10)

µ~x −M~x(ε) =
∑
i:xi>ε

1

N
xi (11)

where µ~x =

N∑
i=1

1

N
xi =M~x(max

i
xi) is the sample mean.

With these functions, we may restate the right-hand side of (8)
as a function, G~x(ε), for which we seek a root:

G~x(ε) = −((1− τ)F~x(ε) + τ(1− F~x(ε))) · ε
+ (1− τ)M~x(ε) + τ(µ~x −M~x(ε)) (12)

Note that F~x(ε) and M~x(ε) are piece-wise constant (with a
discontinuity at each xi). Therefore, G~x(ε) is piece-wise linear.
Each piece has a negative slope. Moreover, G~x(ε) is continu-
ous13. This leads to the following algorithm for finding the
root of G~x(ε) and thus computing the τ -sample-expectile of ~x.

12We also provide a Python/NumPy implementation, available at
https://github.com/matomatical/expectiles.

13This is despite discontinuities in F~x(ε) and M~x(ε). One may
verify that limε↑xi G~x(ε) = G~x(xi) for i = 2, . . . , N because
xiF~x(xi) − xiF~x(xi−1) = xi/N = M~x(xi) − M~x(xi−1). We
omit a full proof.

Algorithm 3 (sample expectile). Given asymmetry parameter
τ ∈ (0, 1) and sample ~x = x1, . . . , xN :

1. Sort ~x. (Below, assume that x1 ≤ . . . ≤ xN .)

2. Compute F~x(xi) and M~x(xi) for i = 1, . . . , N . Since ~x
is sorted, these take particularly simple forms:

Fi ← F~x(xi) =
i

N
, Mi ←M~x(xi) =

i∑
j=1

xj
N
.

Note that MN = µ~x and FN = 1.

3. Compute G~x(xi) for i = 1, . . . , N :

Gi ← −((1− τ)Fi + τ(FN − Fi)) · xi
+ (1− τ)Mi + τ(MN −Mi).

4. The ith segment of G~x(ε) runs from (xi, Gi) down to
(xi+1, Gi+1). Find the i with Gi ≥ 0 > Gi+1 and com-
pute this segment’s root:

(1− τ)Mi + τ(MN −Mi)

(1− τ)Fi + τ(FN − Fi)
.

This is both G~x(ε)’s root and the τ -sample-expectile.

Finally, note that omitting the 1
N factor in the computation of

Fi and Mi may assist with numerical stability. It’s for this
reason that we use FN to replace 1 in steps 3 and 4.

A.2 Estimating expectiles online

For the purposes of exploring expectiles further, we demon-
strate a method for learning expectile estimates online (that
is, maintaining an estimate given a sequence of sample points
one at a time). This method resembles the dynamics of an ex-
pectile’s estimation during an imputation-based RL algorithm,
and provides a simplified context in which to understand the
hypothetical role of dopamine neurons under the distributional
hypothesis of the brain’s learning system.

Given an asymmetry parameter τ ∈ (0, 1) and an i.i.d. se-
quence of T sample points ~x = x1, . . . , xT , consider estimat-
ing the τ -expectile, ε~x(τ), of ~x’s underlying distribution: In
response to each sample point xi, update the estimate, ε̂~x(τ), ac-
cording to equation (13) where α is a positive learning rate.3,4

ε̂~x(τ)
+← α[[xi > ε̂~x(τ)]]

τ
1−τ (xi − ε̂~x(τ)) (13)

As is characteristic of expectiles statistics, this update features
an asymmetric response to positive and negative differences.
With ε̂~x(τ) understood as a prediction of values drawn from
~x’s distribution, we can understand the difference xi − ε̂~x(τ)
as a prediction error. Equation (13) moves ε̂~x(τ) towards xi
in ‘proportion’ to this prediction error, except with different
proportionality constants for positive and negative errors. Refer
to these two proportionality constants as positive-error and
negative-error learning rates—for fixed asymmetry parameter
τ and base learning rate α, they act like constant multipliers
(denoted α+ and α−) as per equation (14):

α+ = ατ α− = α(1− τ) (14)

Indeed, any pair of constants α+, α− > 0 determines an update
scheme for some asymmetry parameter τ and base learning rate

13
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α. The relationship between τ , α, and the asymmetric learning
rates α+ and α− is equation (15):

α = α+ + α− τ =
α+

α+ + α−
(15)

Note that it is with this relationship that [4] interprets the asym-
metric slopes of dopaminergic neuron response curves as en-
coding an asymmetry parameter for each neuron.

The asymmetry of update equation (13) causes the estimate to
‘balance’ at the τ -expectile after successive updates (figure 8).
This convergence arises because the update scheme is an in-
stance of stochastic gradient descent. That is, it corresponds to
updating our expectile estimate according to a loss function’s
estimated gradient14. The loss function is the optimisation
target defining the τ -expectile of a distribution, the so-called
expectile regression loss LER(ε;X, τ), given by equation (16).

LER(ε;X, τ) = E
[
[[X > ε]]τ1−τ (X − ε)2

]
(16)

Stochastic gradient descent steers estimates towards minima
of its loss function. In this case, the loss function defines the
expectiles of the distribution. This link underpins the conver-
gence of update equation (13) to the true τ -expectile of the
distribution from which each xi is drawn.

0 200 400 600 800 1000

number of updates

ε(τ = 0.1)

ε(τ = 0.3)
ε(τ = 0.5)
ε(τ = 0.7)

ε(τ = 0.9)
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Figure 8: Update scheme (13) for several τ values, on a sample of
1,000 points from a toy distribution (gray histogram). Dotted lines
show sample expectiles. Solid lines trace expectile estimates. The
estimates ‘balance’ where the asymmetrically-scaled positive and
negative prediction errors cancel in expectation—at the expectile.

The distributional hypothesis posits that the phasic activity of
midbrain dopaminergic neurons signals the asymmetrically-
scaled prediction errors of equation (13). Accordingly, each
neuron is imbued with its own degree of positive outlook (a
τ -value, determining the neurons response slopes α+ and α−).
Moreover, each neuron plays the role of comparing a reward
prediction (akin to a τ -expectile estimate based on a stimulus)
to a sample of the discounted future reward (akin to xi).

A.3 On scaling asymmetric learning rates in mice

When learning a suite of expectile estimates at varying asymme-
try parameters, it’s desirable to control the speed and stability
of each estimate’s convergence. The base learning rate α in

14In the case of distributional RL, the ‘sample point’ xi may have a
non-zero gradient with respect to our estimate, and so we have rather
an instance of stochastic semi-gradient descent, cf. [1].

equation (13) plays an important role in stabilising the learning
process. In order to achieve efficient and stable updates for the
entire suite of estimates, we consider the possibility of varying
the chosen α with the estimate’s asymmetry parameter. Here
we explore this idea, and a potential connection to the neural
recordings analysed in [4].

We may use the same base learning rate α for each estimate.
Using a constant α for a range of asymmetry parameters corre-
sponds to holding the arithmetic mean of the asymmetric learn-
ing rates α+ and α− fixed with τ . However, an unweighted
arithmetic average may not be appropriate, since highly asym-
metric expectiles will produce more error in one direction than
the other. For example estimating the 0.9-expectile entails
producing many and/or higher negative prediction errors than
positive prediction errors, and so α− will intuitively contribute
more to the speed and stability of learning than α+.

Rather than keeping the arithmetic mean asymmetric learning
rate constant, it seems more desirable to maintain a fixed speed
and stability. The speed and stability are a function of both α+

and α−, as well as the proportion and size of updates utilising
each of them. Since asymmetric learning rates contribute multi-
plicatively to updates, we conjecture that holding the geometric
mean of these rates constant will lead to uniformly efficient
and stable updates across a wide range of asymmetry parame-
ters. To do so, we may determine the base learning rate as the
following function of τ :

ατ =
α0

2
√
τ(1− τ)

(17)

where α0 is an effective base learning rate controlling the
speed and stability of all estimates’ convergence. This learning
rate-setting scheme leads to the following asymmetric learning
rates, which still satisfy equation (15) but do so with constant
geometric mean α0 for varying τ :

α+ =
α0

2

√
τ

1− τ
α− =

α0

2

√
1− τ
τ

. (18)
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Figure 9: Online expectile estimation. Solid trajectories: Constant
geometric mean of α+ and α− by equation (18). Dashed: Constant α.

Figure 9 contrasts the schemes. Note that for τ = 0.5, ατ = α0.
Therefore, the updates coincide for the 0.5-expectile. While the
convergence speed for highly asymmetric expectiles appears
dampened under the constant learning rate scheme, all estimates
behave qualitatively similarly in terms of their convergence
speed and stability under equation (18).
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Finally, we compare the schemes against neural data. In their
analysis of neural recording data prepared in [71], [4] estimate
asymmetry parameters and asymmetric learning rates for 40
dopaminergic neurons across two mice. The resulting asym-
metric learning rates are plotted against their corresponding
asymmetry parameters in figure 10.
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Figure 10: Each vertical quadruple (+, ?,×,−) represents one neuron.
Horizontal position: Estimated asymmetry. Gray: Estimated asymmet-
ric learning rates. Coloured: Geometric and arithmetic means of the
neuron’s learning rates. Estimates from [4], one neuron excluded.

We note that both the geometric means and the arithmetic means
of the estimated rates seem roughly constant across the range
of asymmetries. Thus, both rate-setting schemes seem appear
consistent with the neural data. Further data and analysis is
necessary before a definitive conclusion can be drawn about the
asymmetric-learning-rate-setting scheme hypothetically used
by these neurons. In particular, the schemes differ most in
their predictions for the asymmetric learning rates of highly
asymmetric neurons. Moreover, it will be important to assess
whether any preprocessing steps performed by [4], including
measurement of asymmetric learning rates in an estimated util-
ity space, influence this analysis.

A.4 Towards an efficient expectile imputation strategy

In principle, algorithm 2 represents a compelling alternative to
optimisation-based imputation for its efficiency and simplicity,
but in practice, its approximation suffers due to the need ex-
trapolate beyond outlying coordinates, and the method shows a
lack of robustness to non-monotonicity in its input. We discuss
some advantages and limitations of this strategy.

Our implementation of step 4, in particular extrapolation, in-
troduces visible biases into imputed samples. Observe, for
example, the small outlying peaks in figure 5g, which become
large under the optimistic asymmetry distribution (5h, left pur-
ple peak) due to the significant reliance on extrapolation. In
fact, this bias seems to drive all effects observed in our experi-
ments. While optimisation-based imputation is less susceptible
to this extrapolation problem, the method faces the same funda-
mentally under-determined problem of recovering a distribution
from an insufficient statistical summary, and so must inject its
own assumptions. Limiting the sample to K points ensures
solution uniqueness but may underpin the distributional diver-
gence of this method demonstrated in our fidelity experiments.

Furthermore, the method is not robust to noisy, approximate,
or otherwise non-monotonic input coordinates. Algorithm 2

requires that its input coordinates follow a monotonically in-
creasing function. This may not always hold. In tabular learning
algorithms, distributional updates seem to preserve this mono-
tonicity. However, in the context of function approximation
and in the brain it may be possible for expectile prediction
curves to cross—a known problem in the related context of
expectile regression [17]. Moreover, in the analysis of neural
data involving noisy measurements, even a truly increasing
expectile function may not appear so. In contrast, [4] applied
optimisation-based imputation to this kind neural data with
impressive results our strategy is unable to replicate.

Despite these fidelity and robustness issues, our alternative
strategy is more simple and computationally efficient than the
optimisation-based strategy. In our experiments, we were easily
able to train using orders of magnitude more expectiles and
sample points in an order of magnitude less time. Since [3]
has linked increasing the number of expectiles learned per
stimulus to increased performance gains, we consider this a
significant practical advantage of the approach. Moreover, the
approach achieves these efficiency gains through the reliance
on primarily local computation: Each estimated coordinate
of the CDF is derived from a small number of nearby input
coordinates, regardless of the number of expectiles learned,
leading to a simple parallelisable algorithm. Intuitively, this
style of computation seems more biologically plausible than
global synchronous root-finding.

Future work may lead to an approach based on theorem 1
overcoming some of these limitations. We explored alternative
interpolation and extrapolation techniques including fitting a
polynomial to an inverse logistic transformation of τX(ε). This
method displayed comparable fidelity, but clearly introduces its
own assumptions, and harmed the efficiency and locality of the
computation. It may be possible to find a more principled way
of working with the finite number of coordinates. For example,
Bayesian inference may help explicitly handle assumptions.
Finally, an ‘implicit expectile network’ representation of the
expectile function, along the lines of work in quantile-based
distributional RL [22], may lead to an improved biologically
plausible imputation strategy if combined with theorem 1.
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B Alternative model of gambling disorder

The experiments above demonstrates how the incomplete τ
range affects the behavior acquired after the learning process
involves expectile imputation and sampling. However, this may
not be the only plausible explanation for gambling addiction.
We have also examined the traditional actor-critic model with-
out explicit imputation, and found that an unbalanced τ range
can result in biased strategy as well.

B.1 Model

In the traditional actor-critic model, the actor is updated by the
observation s, the action α chosen and the temporal difference
error of the critic ε. The objective function is

− log(Prs(a)) · ε (19)

which is maximized when the probability of picking the action
whose real reward is much higher than expected is low.

For the distributional actor-critic model, we rewrite the function
as follows

− log(Prs(a)) ·
1

k

k∑
m=1

wτmετm (20)

wτ = 1{ετ ≥ 0} · τ + 1{ετ < 0} · (1− τ) (21)

where wτ is the τ -weight, k is the number of τ value, τm
is the mth τ -value and ετm is the temporal difference error
corresponds to τm at the critic.

When the τ -range is symmetric along τ = 0.5, we call the range
unbiased. Thus a non-distributional critic is a model with one
atom and unbiased τ -range. From our experience, symmetric
τ -range always results in same strategy as non-distributional
agent with proper tuning after convergence, even there may be
more fluctuation during the process of training when the atoms
are sparse but more than one.

B.2 Experiments

In the first experiment, we simulate a gambling machine that
generates the reward from a mixture of gaussian distribution.
The mean value of the reward is controlled around −2. The
player is offered three choices at each round: ‘no bet’, ‘small
bet’ and ‘large bet’, which indicate that the returned reward or
penalty will be multiplied by a factor 0, 1 or 2. In this sense,
a tendency towards ‘large bet‘ could be interpreted as a more
risky strategy that holds an optimistic perspective on the out-
come, while ’no bet’ implies conservativeness and pessimism.
Since the true mean value of the outcome is negative, we ex-
pect that the agent should adopt the conservative strategy after
properly trained.

Here we assume the game is as simple as 1draw-then-check’,
where the player decides his or her next move, check the result
and go on next round. So the only available observation that
the player may refer to is the history of win or loss. Therefore,
the observation is encoded in three states: winning (more win
than loss in the memory window), losing (more loss than win
in the memory window) and neutral (no significant difference
between the chance of wining and losing in the past). Since the

reward is generated out of complete randomness, the current
state in fact has little impact on the reward or the next state.

As shown in fig. 11, the strategy the agent adopts after stabilized
varies across different τ -ranges for distribution model a and b,
while remains unchanged for model c. Though the expected
returns under distribution model a, b, c are the same, their
preferred strategies are qualitatively different. This simple
experiment shows how the distribution itself might affect the
behavior.

The result also coincides with our knowledge about gambling.
Among the three models, model b is the most similar to the
outcome of gambling game, where we witness a higher chance
of loss and also fairly notable chance of wins despite the overall
monetary reward is negative; as a result, its resulting behav-
ior under a optimistic τ -range is most identical to ‘addiction’.
Model c is least like the case of gambling, where a single peak
around losing money definitely would not appeal to the play-
ers; in such case, the shift of τ -range cannot twist the action
preference. The above suggests that the biased strategy may
be the consequence of both the biased τ -range and a specific
distribution.

m
od

el
 a

m
od

el
 b

0 1 2

m
od

el
 c

0 1 2 5 0 5

Figure 11: The result of testing the agent with 21 atoms after learning
under different τ ranges and distributions for 3000 steps. The left
column shows the strategies learned under the unbiased range τ =
(0.4, 0.6). The middle column shows the strategies learned under
τ = (0.8, 1.0). The right column shows the distributions of reward
generation. All three distributions have the expected reward of −2.

Studies suggest that the addiction could be attributed to its other
characteristics related to cognitive distortions, including ‘near
miss’ or ‘losses disguised as wins’ [56, 92, 93]. So we design
the second experiment where we take the visual effect and the
subjective reward into consideration. The prototype model is
the Electronic Gaming Machine (EGM) [93, 94], where after
the player places the bet, the reel starts rolling. The player
only gets rewarded when all slots display the winning icon on
the payline when they stop spinning. We define the states and
features as follows. With the setting as table. 3, we formulate
the reward at each round as:

W =

nslot∏
k=1

1{sk = sw} (22)

reward =W · rm+(1−W ) · pm+ rs
∑

1{sk = sw} (23)

Where we introduce the idea of subjective reward, the sense
of satisfaction that the player gains under visual stimulation
even without monetary reward will contribute to the player’s
enjoyment and willingness to lay higher bets.
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nslot number of slots
sizew size of the mem-window
rm monetary reward
pm monetary penalty
rs subjective reward for

each wining icon
pr the chance each slot

stops at wining icon
sk the icon at kth slot
sw the winning icon

Table 3: EGM Setting

wk if sk = sw
nw count of winning icons
R monetary reward obtained
hw history of wins

Table 4: EGM Features

Using the features listed in table 4 as observations further gen-
eralize the traditional tabular actor-critic model. See fig.12 for
the result. The agent always manages to learn to adopt the
conservative strategy when the expected reward is negative, but
its preference only twists under some settings. It is obvious
that the subjective reward will disguise the negative monetary
reward as positive and thus change the preferred strategy. But
what is interesting is that when the expected reward is con-
trolled, the subjective reward is still able to impair the ability
of learning with the joint effect of biased τ -range by altering
the distribution of the apparent reward.
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Figure 12: The result of testing the agent with 21 atoms after learning
under different τ -ranges and distributions for 3000 steps. The left
column shows the strategies learned under unbiased τ = (0.4, 0.6).
The middle column shows the strategies learned under τ = (0.8, 1.0).
The right column shows the distributions of reward generated by the
EGM with different parameter settings. All three distributions has
the expected reward of −1. The settings of the EGM to yield the
distribution models a, b and c are available in table 5

Note that when the critic passes the loss to the actor without
the τ -weight, that is, we rewrite the formula (20) as

− log(Prs(a)) ·
1

k

k∑
m=1

ετm .

The strategy preference shift is no longer observable, as shown
in fig. 13. Besides, there is no qualitative discrepancy between
the strategy acquired with a non-distributional and distributional
critic. In fact, compared to batch normalization, increasing
the number of atoms helps little to no significant effect on
smoothing out the errors or speeding up training in our cases.

a b c
nslot 3 5 5
sizew 3 3 3
rm 5 3 3
pm -5 -3 -3
rs 1 0.5 0
pr 0.6 0.6 0.8

Table 5: EGM Features

Therefore, we may conclude that the biased τ -weight is the
only direct caused of the biased strategy.

0%

25%

50%

75%

without  weights with  weights

0%

25%

50%

75%

0 1 2
0%

25%

50%

75%

0 1 2

Figure 13: Compare the result strategy with and without τ weight.
Top: trained with one atom (non-distributional); Middle: trained with
21 atoms; Bottom: trained with 41 atoms. The purple, pink and red
bars are for τ -range [0, 0.2], τ -range [0.4, 0.6] and the τ -range [0.8,
1.0], respectively.

B.3 Discussion

When the τ -range is unbiased, we find no significant differ-
ence between the strategy adopted by the non-distributional
and distributional learner under all gaming machine settings.
The only factor that proved to distort the learned preference is
the unbalanced learning rate for samples above and below the
expectation.

The effect of illusion of control, near-miss or loss-disguised-
as-wins should be much more complicated than our model.
Though it is assumed that the player may wrongly take visual
or sound effects as the sign of reward, it remains unclear to us
when and how the conditioning of visual stimulus gets involved
[51, 94]. Other conceivable hypothesis related to reward prox-
imity or stress neurocircuitry are not captured by our model.

Other behavioral studies of animals demonstrate the phenom-
ena of ‘sign-tracking’, the gambling disorder is viewed as a
motivated chasing of the stimulus regardless of the reward [51].
However, we did not succeed in linking biased preference to
distributional learning with the sensitization and evaluation
separated.
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