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Abstract
Image Super Resolution (SR) problem is an in-
verse problem in computational imaging field that
can be formulated and solved using the alternat-
ing direction method of multiplier (ADMM), a
method that reformulate an unconstrained opti-
mization problem into an constrained one. Then,
there is a recently proposed method which re-
places a step in ADMM with a denoiser, called
Plug-and-Play ADMM (PnP), and this method is
proven to converge under some conditions. How-
ever, it is unclear whether a good denoiser will
produce a good SR solution or not. In this paper,
we perform quantitative experiments for each de-
noiser on a set of 10 images throughout varying
configurations of PnP.

1. Introduction
Image restoration, or image reconstruction, tasks are usu-
ally characterized by the transformation of the observed
degraded image y ∈ Rn, in order to find the true, uncor-
rupted, image x ∈ Rn shown as (1)

y = Hx+ e, (1)

where H ∈ Rn×n denotes the degradation matrix and
e ∈ Rn denotes the additive noise vector, with the Ad-
ditive White Gaussian Noise (AWGN) as the most popular
one. As a subset of that, Image Super-Resolution (SR) is
a technique, or a class of techniques, that is aimed to in-
crease the resolution of an imaging system which can be
formulated as a maximum-a-posteriori (MAP) estimation
problem (Delon & Houdard, 2018). In addition, as one will
see, this unconstrained optimization problem can also be
reformulated as a constrained one, and this conversion is a
technique called alternating direction method of multiplier
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(ADMM) which is the main character in the plug-and-play
(PnP) framework we are focusing on (Boyd et al., 2011).

1.1. MAP and ADMM

The main goal of MAP estimation is to maximize the poste-
rior probability as shown in (2), which the p(y | x) denotes
the likelihood term, acting as the forward model, and the
p(x) denotes the prior distribution or probability distribu-
tion of the true image, acting as the regularization term

x̂ = argmax
x

p(x | y)

= argmin
x

−log p(y | x)− log p(x).
(2)

From that, after applying the monotonic negative logarithm
function, the problem could be simplified by assigning
f(x)

def
= − log p(y|x) and g(x)

def
= − (1/λ) log p(x) with

λ as the confidence term, shown in (3)

x̂ = argmin
x

f(x) + λ g(x). (3)

Then, ADMM converts this unconstrained optimization
problem into a constrained one, shown in (4), thus split-
ting the variable which one could think of as splitting the
problem into subproblems that, individually, can be more
optimally solved

(x̂, v̂) = argmin
x,v

f(x) + λg(v), subject to x = v. (4)

Moreover, when augmented Lagrangian method which adds
the Lagrange multiplier variable (u) to the problem is ap-
plied to (4), shown as the function L in (5)

L (x,v,u) = f(x) + λg(v) + uT (x− v) +
ρ

2
‖x− v‖2 ,

(5)

the solution to the problem can be found through solving
subproblems to update the variables sequentially, addressed
as (6), (7), and (8)

x(k+1) = argmin
x∈Rn

f(x) +
ρ

2

∥∥∥x− x̃(k)
∥∥∥2 , (6)

v(k+1) = argmin
v∈Rn

λg(v) +
ρ

2

∥∥∥v − ṽ(k)∥∥∥2 , (7)
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ū(k+1) = ū(k) + (x(k+1) − v(k+1)), (8)

where ū(k+1) def
= (1/ρ)uk is the scaled Lagrange Multiplier,

tuned by ρ, x̃(k) def
= v(k) − ū(k) and ṽ(k) def

= x(k+1) + ū(k)

are temporary variables. In addition, it should be noted that
there is an important assumption on f and g that can guar-
antee convergence of (6)-(8) to the solution of (3), which is
that f and g are closed, proper, and convex.

1.2. Plug-and-Play ADMM

Using the structure of sequential update of ADMM, and its
nature of splitting into subproblems, we can reformulate the
role of the variables and its update to fit the problem we
want to solve. Focusing on the image restoration problem,
(6) could be seen as an inversion step, with the forward
model f(x) being involved, and (7) could be seen as a
denoising step, with the prior g(v) being involved, and
(8) being just the update of the Lagrange multiplier. With
that, further simplification and variable allocation could be
applied without the loss of generality to achieve the intuition
of the process. For example, defining σ =

√
λ
ρ , Chan et al.

(Chan et al., 2016) showed that (7), which is considered as
the denoising step since it involves the prior g(v), can be
rewritten as (9)

v(k+1) = argmin
v∈Rn

g(v) +
1

2σ2

∥∥∥v − ṽ(k)∥∥∥2 . (9)

This reformulation gave us the intuition that ṽ(k) is the
noisy image, and σ is the denoising strength or the hypoth-
esized noise level, which this hypothesized value could be
understood as the prior. Additionally, it shows that (9) is
trying to minimize the residue between ṽ(k) and the clean
image v, as interpreted by the algorithm, via the use of prior
(g(v)). With (9) being controlled by both the prior and σ,
Venkatakrishnan et al. (Venkatakrishnan et al., 2013), has
proposed that (9) can be simplified further as (10)

v(k+1) = Dσ(ṽ(k)), (10)

which Dσ denotes a proximal map or an off-the-shelf image
denoisers. This usage of Dσ motivated the term ’Plug-and-
Play’ to be coined, since the user can plug in their own
denoisers, and then the algorithm will play or solve your
inverse problem via the ADMM framework. In addition,
this heuristic nature begs the question if better denoisers
consistently give us better results, whether in the general or
a specific domain, or not. From that, there are modifications
of the original PnP framework which assumes ρ to be fixed,
with Chan et al. (Chan et al., 2016) proposing a continuation
scheme by constantly updating value of ρ by ρk+1 = γρk,
called ’monotone update’ rule which, note the k subscript of
ρk, adds another layer to the overall PnP ADMM framework

as follows:

x(k+1) = argmin
x∈Rn

f(x) +
ρk
2

∥∥∥x− (v(k) − u(k))
∥∥∥2 ,

(11)

v(k+1) = Dσk
(ṽ(k)), (12)

u(k+1) = u(k) + (x(k+1) − v(k+1)), (13)

ρk+1 = γkρk. (14)

In addition, there is also an ’adaptive update’ rule which
update ρ in the same vein as that of the monotone update
rule if value of the new residue

∆k+1
def
=

1√
n

(ε1 + ε2 + ε3), (15)

where ε1
def
=
∥∥x(k+1) − x(k)

∥∥
2
, ε2

def
=
∥∥v(k+1) − v(k)

∥∥
2
,

and ε1
def
=
∥∥u(k+1) − u(k)

∥∥
2
, is greater than or equal to

that of a portion of the old residue, ∆k+1 ≥ η∆k, with
η ∈ [0, 1). In addition, (15) can also be used as a stop crite-
ria, which Chan et al. (Chan et al., 2016) had determined
that ∆k+1 ≤ 10−3 is a good stop criteria, with 10−3 be-
ing the maximum value of this tolerance for stopping the
algorithm, or say that the algorithm has converged in Algo-
rithm 1. Then, assuming λ is fixed, the overall PnP ADMM
procedure for the adaptive update rule is illustrated in Algo-
rithm 1. Note that this adaptive update rule is inspired by
the work by Goldstein et al. (Goldstein et al., 2014) which
attempts to accelerate the ADMM problem via the introduc-
tion of the parameter η as an additional parameter that is
the factor in consideration, whether to update or not, with
the combined residual. Then, the convergence of the PnP
ADMM scheme was analyzed by Chan et al. (Chan et al.,
2016) which showed that for any bounded denoisers, the
PnP ADMM with adaptive learning rule has a fixed point
convergence, complementing the global convergence results
presented in (Sreehari et al., 2016). Moreover, Ryu et al.
(Ryu et al., 2019) presented another assumption other than
assuming 2Dσ − I is nonexpansive, a strong assumption
that guarantees convergence of PnP ADMM, which assume
this Dσ : Rn −→ Rn for all x,y ∈ Rn for some ε ≥ 0:

‖(Dσ − I)(x)− (Dσ − I)(y)‖2 ≤ ε2 ‖x− y‖2 , (a)

and this is in addition to the data fidelity term, or f(x)
term in (3), being assumed as µ-strongly convex. These
assumptions, both the f(x) being µ-strongly convex and (a)
all play a role showing that the PnP ADMM converges, in
addition to leveraging the equivalence of PnP ADMM and
the ’Plug-and-Play Douglas-Rachford Splitting’ (PnP DRS)
scheme. However, it must be noted that the strong convexity
assumption is usually satisfied in image deblurring and im-
age denoising applications, not the image super resolution
and compressed sensing.
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1.3. Related Works

After its initial introduction by Venkatakrishnan et al.
(Venkatakrishnan et al., 2013) in 2013, the intuition of ’Plug-
and-Play’ has been implemented in combination with other
schemes. For example, the Iterative Shrinkage/Thresholding

Algorithm 1 Plug-and-Play ADMM with Adaptive Update
Input: ρ0, λ, η < 1, γ > 1.
while Not Converge do
x(k+1) = argminx f(x) + (ρk/2)

∥∥x− x̃(k)
∥∥2 ,

where x̃(k) = (v(k) − u(k))
v(k+1) = Dσk

(x(k+1) +u(k)), where σk =
√
λ/ρk

u(k+1) = u(k) + (x(k+1) − v(k+1)

if ∆k+1 ≥ η∆k then
ρk+1 = γρk

else
ρk+1 = ρk

end if
k = k + 1

end while

Algorithm (ISTA), an alternative to ADMM on solving the
inverse problem formulated as (3) which the large dimen-
sionality of the imaging data and non-differentiability of
the regularizer (x) has called for a need of proximal algo-
rithms, a component to both ISTA and ADMM, to assist
in solving these problems. These algorithms heavily rely
on the proximal operator, proxf (z) = argminx∈X(f(x) +
1
2 ‖x− z‖

2
2), which can be seen as (6) and (7) being re-

formulated as proxf (x̃(k)) and proxf (ṽ(k)), respectively,
which when it comes to PnP scheme, the proximal operator
becomes the denoiser, as seen in a transition from (7) to
(10). However, the differences between the PnP-ISTA and
PnP-ADMM are on the inversion step which the proximal
operator is still being used for PnP-ADMM as (6), in con-
trast to the PnP-ISTA which relies on the gradient of the
data fidelity term, or f(x) term in (3). The other difference
lies in the Lagrange multiplier variable u update, as seen
in Algorithm 2, proposed by Sun et al. (Sun et al., 2019).
In addition, the convergence of PnP-ISTA is analyzed by
another work (Xu et al., 2020) which uses MMSE denoiser
with PnP-ISTA to prove that the overall scheme converges
to a stationary point of some global cost function. It should
be noted that if qk variables in PnP-ISTA have their val-
ues adapted as qk = 1

2 (1 +
√

1 + 4q2k−1), the algorithm,
proposed by Beck and Teboulle (Beck & Teboulle, 2009)
corresponds to the accelerated version of ISTA, called Fast
ISTA, and one could consider it as PnP-FISTA which is
being used in another work by Sun et al. (Sun et al., 2018)
on Fourier ptychographic microscopy.

To consider another example of combining denoisers with
another scheme, the approximate message passing (AMP)

algorithms, which is a class of low-complexity, scalable
algorithms for statistical estimation in problems such as
compressed sensing (Rush & Venkataramanan, 2016). Stem-
ming from that, Denoising-based AMP (D-AMP) is an ex-
tension of AMP by coupling with a denoiser, and it is shown

Algorithm 2 Plug-and-Play ISTA
Input: ρ, λ, γ > 1, and qkk∈N .
while Not Converge do
x(k+1) = u(k) − ρ∇f(u(k))
v(k+1) = Dσk

(x(k+1)), where σk =
√
λ/ρ

u(k+1) = v(k+1) + ((qk−1 − 1)/qk)(vk+1 − vk)
end while

by Metzler et al. (Metzler et al., 2014) that by plugging in a
denoiser, it offers, or plays out, state-of-the-art compressed
sensing recovery which is better than the use of AMP algo-
rithms alone, in addition to being extremely robust to noise.
However, it was noted that the framework heavily relies on
the assumption of the residual signals following Gaussian
distribution, in other words, the A in its specific forward
model of f(x) = ‖Ax− y‖2. are strong assumptions that
the behavior of D-AMP becomes ambiguous should the
assumptions not be met. From that, a more recent robust
alternative of AMP, called Vector AMP (VAMP) is pro-
posed by Rangan et al. (Rangan et al., 2016), addresses
the Gaussian assumption in that VAMP applies to arbitrar-
ily conditioned matrices A, and Fletcher et al. (Fletcher
et al., 2018) had shown in a compressive image recovery
task that VAMP only shows a miniscule amount of PSNR
degradation due to ill-conditionedA, when compared with
that of AMP, coupled with the same denoisers. However, we
are focusing only on Plug-and-Play nature of the ADMM
algorithm.

1.4. Image Super-Resolution

From (3), which mentions the forward model as f(x), the
image super-resolution tasks, which consists of two oper-
ations: an anti-aliasing filter and a sub-sampling process,
reformulate the data fidelity term f(x) to be in the form

f(x) = ‖SHx− y‖2 , (16)

where H ∈ Rn×n. is a binary matrix denoting the binary
sampling matrix, in this case a K-fold downsampling, and
S ∈ Rm×n where m < n is a convolution matrix repre-
senting the anti-aliasing filter. As noted in the user guide
of MATLAB implementation of PnP for image restoration
applications developed by Chan et al. (Chan et al., 2016),
H is implemented using convolution y = h ∗ x, which
x denotes the input, or the clean image in this case, and
h denotes the blur kernel which could be implemented as
either a bicubic blur kernel or a Gaussian blur kernel with
specified standard deviation.
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In addition, definingG = SH , (6) can be reformulated as

x̂ = argmin
x∈Rn

‖Gx− y‖2 +
ρ

2
‖x− x̃‖2 , (17)

where we drop iteration number k and consider x(k+1) as x̂
to analyze (17) in an optimization setting, which the solution
being the pseudo-inverse

x̂ = (GTG+ ρI)−1(GTy + ρx̃). (18)

AsGTG, orHTSTSH is neither diagonal nor diagonal-
izable by the Fourier transform, solving this f-subproblem
becomes nontrivial. However, this problem has a closed-
form solution when S is a standard K-fold downsampler
and H is a circular convolution, using Sherman-Morrison-
Woodbury identity, also known as the Woodbury matrix
identity, to reformulate the pseudo-inverse solution as

x̂ = ρ−1b− ρ−1GT (ρI +GGT )−1Gb, (19)

where b def
= GTy + ρx̃, following by the realization that

GGT gives us SHHTST which is a ’upsample-filter-
downsample’ sequence since S is a K-fold downsampling
operator, ST is a K-fold upsampling operator, andHHT is
a convolution between the blur kernel and its time-reversal.
Consequently from this reformulation and realization of the
sequence, one could use a concept of polyphase decomposi-
tion, initially introduced by the work of polyphase network
analysis by Bellanger et al. (Bellanger et al., 1976), to
decompose the z-transform representation of the blur matrix

H̃(z) =

K−1∑
k=0

z−kH̃k(zK), (20)

with H̃k(zK) being the kth polyphase component of H(z).
Then, as Vaidyanathan (Vaidyanathan, 1990) had shown
the application of Noble identity on retrieving equivalent
representation of the polyphase decomposition, the Noble
identity can be applied on theGGT operation which made
the overall sequence of SHHTST to be simplified in a
form of a finite impulse response (FIR) filter H̃0(z), the 0th
polyphase component of the filter HHT . Consequently,
by downsampling the convolved filter H̃ = HHT , the 0th
polyphase component is implemented, and the FIR nature of
the sequence makes the pseudo-inverse solution (19) to be
rewritten as a closed-form solution with the help of Fourier
transform

x = ρ−1b− ρ−1GT (F−1 F(Gb)

|F(h̃0)|2 + ρ
), (21)

where b = GTy + ρx̃. From that, Chan et al. (Chan
et al., 2016) has quantitatively shown that this closed-form
method has significantly reduced the runtime of solving this
inversion step, compared to the conjugate gradient method
(Brifman et al., 2016), in which the runtime increases lin-
early with increasing iterations on the log-log plot.

1.5. Contributions

With the recent developments of the Plug-and-Play ADMM
methods (PnP), both in terms of comparable image super
resolution performance, if not superior, compared to that
of other methods such as the transformed self-exemplar
method (TSE) by Huang et al. (Huang et al., 2015) or the
Gaussian process regression method (GPR) by He and Siu
(He & Siu, 2011), and in terms of convergence analyzed
by Chan et al. (Chan et al., 2016), it can be said that PnP
has earned its place as a state-of-the-art methods for solving
the image super resolution (SR) problem. However, there is
still a gap in the understanding of the optimal choice of de-
noiser that is being plugged into the algorithm, which there
are postulates based on the intuition that superior denoiser
implies a superior PnP performance.

From that, we attempt to address this gap by conducting
quantitative experiment of PnP for solving SR problem us-
ing 10 of the well-known Set12 dataset (Zhang et al., 2017),
by first defining the term ’superior denoiser’, which in this
case is going to be the denoiser that has superior denoising
performance measured with PSNR, compared to the others
at all noise levels. Then, by pinpointing the superior de-
noiser, we plug them into the PnP algorithm, and measure
the PSNR of the output using the original image as the ref-
erence. By averaging the PSNR over all the denoisers, we
hypothesize that, using the same parameters, the denoiser
that perform denoising well at the specified noise level will
also solve the SR problem well, in a positively correlated
way. In other words, if that specified denoiser performs
denoising well at noise level of 10/255, but poorly at noise
level of 50/255, we hypothesize that this denoiser will solve
the SR problem via PnP well at noise level of 10/255, but
poorly at noise level of 50/255.

2. Methods
2.1. Dataset

Prior to assessing the performance of the SR model, we used
10 standard test images in .png from the Set12 dataset, a
well known 12 grayscale image dataset initially introduced
by Zhang et al. (Zhang et al., 2017), as a benchmark for
image denoising methods. The images are shown in 1 as the
first row images have a size of 256x256 and the second row
images have a size of 512x512. Then, after implementing
blur kernel, downsampling, and adding Gaussian noise to
the original image, we also use the same set of images to
test the SR performance with the scaling factor of K = 2.
The reason behind the usage of same images for SR task
is that we would like to observe the correlation between
the denoising performance, implying the potential of the
denoiser, and the SR performance, which the correlation
might be ambiguous should the input image be different.
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Figure 1. 10 testing images for the experiment

2.2. Experimental Setup

2.2.1. DENOISING TASK

With the dataset in hand, we first apply AWGN with σ =
10/255, 25/255, 50/255, 70/255, 100/255, 130/255, 160/255,
and 190/255 as 8 separate cases. Then, we normalize the
noisy images to make a preferable data range of [0,1] for the
denoisers, which in this case we have chosen to implement
the denoising task using the Recursive Filter (RF) (Gastal
& Oliveira, 2011), Non-local Means (NLM) (Buades
et al., 2011), Block-matching and 3D Filtering (BM3D)
(Dabov et al., 2006), Total Variation (TV) (Chan et al.,
2011), Deep Convolutional Neural Network (DnCNN)
(Zhang et al., 2017), and Fast and Flexible Denoising
Convolutional Neural Network (FFDNet) (Zhang et al.,
2018) denoisers. Specifically, we have benefitted from the
MATLAB implementation of PnP for image restoration
applications developed by Chan et al.(Chan et al., 2016) by
using the wrapper function that links directly to the function
activating the denoiser RF, NLM, BM3D, TV which we
kept the constants of each and every case the same, and all
denoisers are available for download as an open-source soft-
ware. DnCNN denoiser is, on the other hand, available as a
sequence of calling MATLAB readily available functions,
net = denoisingNetwork(’DnCNN’) for retriev-
ing a pretrained image denoising convolutional neural net-
work which then becomes an input parameter for the func-
tion denoised = denoiseImage(noisy,net),
estimating the denoised image, denoised, from noisy
image, noisy, using the pre trained DnCNN specified by
net. However, it must be noted that these two functions
require a Deep Learning Toolbox (The MathWorks, 2018).
Then, using the MATLAB implementation of FFDNet
developed by Zhang et al. (Zhang et al., 2018) and
inspired by the practicality offered by the aforementioned
wrapper function, we have written the wrapper function
for the FFDNet, which is implemented by editing the
script Demo_AWGN_Gray.m into our customized script
FFDNet.m which loads the pre trained FFDNet model for
grayscale images, FFDNet_gray.mat, and perform denoising
on the noisy image input by evaluating the network model

via function vl_simplenn.m. Note that this vl_simplenn.m
function is from an external open-source MATLAB toolbox
for implementing CNNs called MatConvNet (Vedaldi &
Lenc, 2015).

Consequently after performing denoising task, we quan-
tify the performance using the MATLAB function,
psnr(denoised_img, ground_truth) which cal-
culates, in dB, the peak signal-to-noise ratio (PSNR) of
the denoised image, denoised_img, with the image
ground_truth as the reference. The PSNR values of
all images are then averaged to look at the overall perfor-
mance. In addition, this method is also applied on the SR
task, comparing the PnP output with the original grayscale
image.

2.2.2. IMAGE SUPER-RESOLUTION

After the denoising tests are done, the next phase of the
experiments is to put the images of Set12 dataset to go
through the PnP algorithm for image SR task at a factor of
K = 2, which is using the lower resolution image as input
into the algorithm and having a high resolution image as an
output, with a hope that the output and the ground truth are
similar. Having known that the BM3D is a state-of-the-art
denoiser Chan et al. (Chan et al., 2016) used to analyze SR
performance of PnP ADMM algorithm, which surpasses
other methods being discussed, we plan to compare the SR
performance using BM3D with the case of using DnCNN,
in addition to the case of a faster alternative, FFDNet, in
order to prove our hypothesis. In addition, even though
the behavior of adaptive update rule for the PnP ADMM
scheme shown in Algorithm 1 is proven to be more robust
than that of the monotone update and the original method
proposed by Venkatakrishnan et al. (Venkatakrishnan et al.,
2013), we have chosen to perform SR task on those two
cases as well, in order to probe into the robustness of the al-
gorithm on a particular denoiser, in addition to determining
the final product if the choice of denoiser uniformly affects
SR results. Note that in addition to measuring the PSNR and
averaging the PSNR over all the images, one should keep
in mind that the upscaling procedure of the image in this
case utilizes only the bicubic interpolation method, or the
function imresize(img,K) in MATLAB, where img
corresponds to the image and K corresponds to the factor of
magnification, 2 in this case.

Moreover, the influence of ρ0 impinged upon SR perfor-
mance is not to be overlooked, which is why we have set up
another degree of freedom on varying the value of initial ρ in
order to both verify the result from Chan et al. (Chan et al.,
2016) that ρ0 = 1 is the best alternative, and to look at the
performance of each denoiser iteration-wise, if it is robust
or not, with a further discussion in Appendix 5.1. From that,
we have chosen the values ρ0 = 10, 1, 10−2, 10−5 which
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are in the range of typical ρ0 that perform well. However,
the ρ0 value of 10 was chosen to test the presumably convex
nature of this parameter, in other words, if the SR perfor-
mance for ρ0 = 1 is truly the best, increasing ρ0 to 10 should
degrade the performance, same applies to ρ0 = 10−2.

Then, after the verification of the best ρ0 being a value of 1,
we perform the SR task on original PnP-ADMM, monotone
update rule, and the adaptive update rule as the rationale
are discussed above. In addition, it should be noted that the
maximum number of iterations are decreased to 15 for both
monotone and adaptive update rule, in contrast to the case of
original PnP which has 20 iterations, because the monotone
update rule applied to the denoisers TV and RF returned only
17 iterations of PnP outputs which could be explained by the
residual (15) having a value greater than the tolerance set at
10−4 which is greater than the minimal acceptable tolerance
level of 10−3 as discussed in Chan et al. (Chan et al., 2016)
regarding the stopping criteria. Also, as we are ultimately
looking at the SR performance of each denoiser with respect
to the noise levels, 3 sets of experimental configurations are
studied which each has varying noise levels, and are shown
in Table 1, where λBM3D corresponds to the λ parameter
for the BM3D denoiser, and vice versa for other respective
denoisers.

Table 1. Configuration, Parameters, and Variables for SR task
K=2; Mono = Mototone Update Rule; Adapt = Adaptive Update
Rule; Iter = Maximum Iterations; Params = Parameters.

Config Description

Original H = 9×9 Gaussian of std 1, γ = 1, Iter = 20
Mono H = 9×9 Gaussian of std 1, γ = 1.2, Iter = 15
Adapt H = 9×9 Gaussian of std 1, γ = 1.2, Iter = 15,

η = 0.75
Params Noise = [5,10,25,50,70]/255, ρ0 = 1,

λRF = 0.0002, λNLM = 0.001,
λBM3D = 0.001, λTV = 0.01,
λDnCNN = 0.01, λFFDNet = 0.01

3. Results
3.1. Denoising Task

Depicted in Table 2, one could see that the DnCNN denoiser
performed best, averaged through all noise levels, with NLM
coming in at second place, FFDNet coming in close as a
third place, BM3D coming in at the fourth place, TV coming
in at the fifth place, and RF coming in at the sixth place.

Then, showing the best denoiser at a particular noise level
in bold, a trend of FFDNet performing better than other de-
noisers at high noise levels and its poor performance at low
noise levels can be explained by the parameter being input

Table 2. Denoising Performance via PSNR (dB) at Various Noise
Levels

Noise (σ) RF NLM BM3D TV DnCNN FFDNet
5 31.75 31.23 31.94 31.85 31.58 28.65

10 26.91 29.15 29.63 28.22 29.20 27.34
25 19.86 21.26 20.66 20.61 21.68 21.50
50 16.59 17.48 16.92 17.10 18.03 18.08
70 15.46 16.21 15.71 15.90 16.78 16.88
100 14.51 15.17 14.71 14.91 15.76 15.86
130 14.00 14.59 14.18 14.36 15.14 15.20
160 13.71 14.28 13.88 14.06 14.83 14.83
190 13.48 14.04 13.64 13.82 14.62 14.63

Average 18.47 19.27 19.03 18.98 19.74 19.22

into the denoiser, σ, or the noise level that the algorithm will
estimate as the true noise level of the noisy image, which
we have chosen a value of 0.1 or approximately 25/255,
coming from σ =

√
0.01/1, meaning that the algorithm

will estimate the noise level to be 25/255. However, the high
noise level map of FFDNet outputs an inferior performance
to DnCNN overall, which performs the best in this case. In
addition, one should also note the superior performance of
BM3D at low noise levels. For further visualization of the
denoising performance, Figure 2 gives a pictorial illustration
of the denoising performance of the denoisers, which it is
easier to see the poor performance of FFDNet at low noise
levels, the superior performance of BM3D at low noise lev-
els, the uniformly superior performance of DnCNN, and the
superior performance of FFDNet at high noise levels which
is comparable to that of the DnCNN.
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Figure 2. Denoising Performance at Various Noise Levels

3.2. Image Super-Resolution

After the validation of the best ρ0 parameter value being
the value of 1, discussed in 5.1, one can refer to Table 3
which depicts a similar trend of Image Super Resolution
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(SR) Performance to that of the denoising performance in
Table 2. In addition, for visual comparison on the SR task
results, outputs of the PnP on adaptive update configuration
is shown as Figure 3 which, interestingly, RF and DnCNN
performs SR task even worse than using merely bicubic
reconstruction for upscaling the downscaled and blurred
image, as seen in the caption of Figure 3.

Table 3. Image Super Resolution (K = 2) Results at Various Noise
Levels, all done using ρ0 = 1; Avg = Average

Denoisers
Noise (σ) RF NLM BM3D TV DnCNN FFDNet

Original PnP Scheme; γ = 1; Maximum Iterations = 20
5 25.10 24.93 25.31 25.28 24.72 22.91

10 24.85 24.99 25.36 25.03 22.74 22.74
25 18.72 21.17 21.15 20.80 17.77 20.10
50 14.95 17.50 17.17 17.52 14.88 17.57
70 13.80 16.15 15.65 16.34 13.83 16.58

Avg 19.48 20.95 20.93 20.99 18.78 19.98
Monotone Update; γ = 1.2; Maximum Iterations = 15

5 24.91 24.52 24.97 25.15 24.80 22.55
10 24.76 24.56 25.02 24.60 23.64 22.37
25 19.50 20.84 20.76 20.27 19.20 19.93
50 16.27 17.41 17.16 17.18 16.24 17.57
70 15.16 16.21 15.89 16.07 15.17 16.68

Avg 20.12 20.71 20.76 20.65 19.81 19.82
Adaptive Update; ; γ = 1.2; η = 0.75; Maximum Iterations = 15

5 24.95 24.61 25.08 25.32 24.86 22.55
10 24.80 24.70 25.15 24.81 23.58 22.37
25 19.44 21.00 20.94 20.49 19.10 19.91
50 16.18 17.48 17.19 17.32 16.14 17.54
70 15.06 16.23 15.86 16.20 15.06 16.60

Avg 20.09 20.80 20.84 20.83 19.75 19.80

Figure 3. Image SR Results at σ = 50. [Top](from left to right).
Ground truth; Bicubic reconstruction (17.37 dB); RF (16.94 dB);
NLM (18.39 dB). [Bottom](from left to right). BM3D (18.12 dB);
TV (18.16 dB); DnCNN (16.88 dB); FFDNet (18.25 dB)

The uniformity and similarity of the SR performance
throughout all configurations can be visualized using Figure
4 which the original scheme depicted in blue color can be
seen as having a superior performance at noise level of 5,

10, and 25, compared to that of the monotone update con-
figuration depicted in red, and that of the adaptive update
configuration depicted in black. However, both the mono-
tone and adaptive update have a superior performance at
higher noise levels of 50 and 70, compared to that of the
original PnP scheme. Also, note that these gaps between
configurations are not as significant as the gaps between the
choice of denoisers, which one can observe via the exam-
ple of a comparison between BM3D and FFDNet shown in
Figure 5.
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Figure 4. SR Performance at Various Noise Levels, with blue curve
depicting the original scheme, red curve depicting monotone up-
date configuration, and black curve depicting adaptive update
scheme

We believe that the gap between method is due to the estima-
tion of noise standard deviation, which is governed by the
term σ =

√
λ/ρ, and this σ is integrated into the denoisers

to estimate and attempt to denoise, an integral step depicted
by (10). This estimation is updated in an iterative manner in
both monotone and adaptive update configuration, using the
term γ which explains the SR performance at higher noises
being better than that of the original scheme. For example,
BM3D has the input of sigma into their algorithm, which
the denoiser has a fixed λ value of 0.001, inferring that at ρ
value of 1, the estimated σ, or noise level, is approximately
8. Then, as FFDNet has a fixed λ value of 0.01, and fol-
lowing the same method, the estimated noise level becomes
25.5.

From that, Figure 5 helps visualize the performance of
BM3D which performs well at lower noise levels, and con-
firming the observation on the effects of σ estimation which
varies between configurations. FFDNet, on the other hand,
has a significant gap of SR performance at lower noise levels
when compared with that of BM3D, and better performance
at higher noise levels, all that in addition to the confirmation
of the aforementioned observation.
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Figure 5. SR Performance of BM3D versus FFDNet at Various
Noise Levels and Configurations

In addition, the performance of TV denoiser which had the
same λ value as FFDNet, 0.01, on SR task can be seen on
Figure 6 which shows a significant gap in SR performance
at lower noise levels when compared with FFDNet. Also,
the TV denoiser performed SR task better than BM3D at
higher noise levels, suggesting that λ values truly plays
a role in outputting better SR performance at a particular
noise level. Nonetheless, there are some discrepancies in
the choice of denoiser, as a significant gap between TV and
FFDNet is present in denoising performance at noise level
higher than 50, but the gap is almost nonexistent for the SR
performance, considering TV and FFDNet.
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Figure 6. Comparison of SR Performance for FFDNet, BM3D, and
TV at Various Noise Levels using Original Scheme

However, these gaps and similarity in trend are not present
in the DnCNN denoiser, which performs best, on average,
with high denoising potential at higher noise levels, but
its poor performance on SR significantly contradicts our

findings on the FFDNet. We have postulated that this contra-
diction for the DnCNN case stems from either its function
in MATLAB which is a built-in function lacking the tunable
parameter that will be tuned in the monotone and adaptive
configuration, σ, which , or its pre-trained nature such that
it might not perform very well on the output of the inversion
step, which it would be essential to test on other inverse
problems related to SR problem such as the deblurring prob-
lem which is the SR problem without the downscaling and
upscaling module. In addition, the DnCNN might be an un-
bounded denoiser, one which violates the condition leading
to convergence, as proven by Chan et al. (Chan et al., 2016).

Then, both Figure 2 and Figure 4 suggests a positive cor-
relation in the choice of denoiser and the SR performance,
but that DnCNN makes a contradictory case with possible
cause of discrepancy above. This is with a note that choice
of configuration, ρ0, and λ, which infers on the parameter of
denoiser σ, playing an important role in bringing about this
correlation, but not as important as the intrinsic property of
the denoiser itself, as one can take the TV denoiser com-
pared to FFDNet example. Moreover, one should keep in
mind the tunable parameters and the nature of the denoiser,
as mentioned in the DnCNN case.

4. Conclusion
We presented a quantitative experimental result for Plug-
and-Play ADMM used to solve image super resolution prob-
lem. We showed that the denoisers being plugged into the
ADMM algorithm has a positively correlated performance
between the denoising performance and image super res-
olution solving performance, but not a perfectly positive
correlation and there are outliers present. The contradictory
results, positively correlated performance on FFDNet and
vague results on DnCNN, lead to a conclusion that a uni-
formly superior denoiser does not strictly imply a stronger
candidate of a denoiser to be plugged into the ADMM al-
gorithm. In addition, we experimentally show that at an
optimum ρ0 value of 1, the behavior across the experimen-
tal configurations are consistent.

5. Appendix
5.1. Appendix A: Effects of Varying ρ0 Parameter

As mentioned in Section 2.2.2 regarding the choice of ρ0
in consideration, ρ0 = [10, 1, 10−2, 10−5], we attempt to
confirm the literature results on that ρ0 = 1 is the best
alternative out of the four via the use of the original PnP
scheme configuration with the same parameters depicted in
Table 1. Moreover, we are also looking at the performance
iterative-wise, in order to identify if the performance for the
particular denoiser at a noise level is robust or not.
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From that, the only variable at play is the ρ0 value, and by
plugging different and the same test images for the other
experiments, with different noise levels, we have calculated
the PSNR, and consequently average them over all the test
images and stored for each iteration, which the results are
shown as Figure 7, 8, and 9. Note that these figures vary in
noise levels in order to look at the SR performance, which
is assumed to be varied throughout different noise levels.
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Figure 7. SR Performance at Each Iterations for Varying ρ0 Values
at σ = 10; Diamond: ρ0 = 1; Cross (X):ρ0 = 10; Circle (o):ρ0 =
10−2; Triangle: ρ0 = 10−5

By focusing on the ρ0 values first, Figure 7 shows that at
ρ0 = 1, for every denoisers, except FFDNet and DnCNN,
the SR performance turns out to be superior to other ρ0.
Note that ρ0 = 10 and ρ0 = 10−5 had a lesser degree of
fluctuation than that of ρ0 = 1 and ρ0 = 10−2 which had
the most fluctuation, despite a significant gap between itself
and the ρ0 = 1 case. Also, the constant degradation of
DnCNN and FFDNet at ρ0 = 1 and ρ0 = 10, respectively,
are not to be overlooked, since it might explains the aberrant
behavior of DnCNN for playing in the ADMM algorithm.

Then, this Figure 8 shows the same ultimate result of ρ0 = 1
being the best alternative, with an interesting finding that
FFDNet at ρ0 = 1 performs superior to other denoisers, and
that TV denoiser at ρ0 = 10−2 has a significant amount of
increase in PSNR over just 10 iterations. Also, it can be
seen that every denoiser, except DnCNN and RF at ρ0 = 1,
has a robust performance after iteration number 15.

Figure 9 also suggests the same trend as that of Figure 8,
in addition to the TV, FFDNet, and NLM being the ideal
denoiser for higher noise levels at ρ0 = 1 and 10−2 which
was not mentioned. However, note that the SR performance
of FFDNet at ρ0 = 10−5, for all noise levels, deteriorates
after iteration number 2 (not shown), and plummets to a
negative PSNR value which made ρ0 = 10−5 an infeasible
value for FFDNet case.
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Figure 8. SR Performance at Each Iterations for Varying ρ0 Values
at σ = 50; Diamond: ρ0 = 1; Cross (X):ρ0 = 10; Circle (o):ρ0 =
10−2; Triangle: ρ0 = 10−5
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Figure 9. SR Performance at Each Iterations for Varying ρ0 Values
at σ = 70; Diamond: ρ0 = 1; Cross (X):ρ0 = 10; Circle (o):ρ0 =
10−2; Triangle: ρ0 = 10−5
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